New Video Celebrates 50th Anniversary of Wild & Scenic Rivers Act

Credit: NPS.gov

Communities across the nation are preparing to celebrate the 50th anniversary of the Wild and Scenic Rivers Act. This landmark legislation passed by Congress in October 1968 safeguards the free-flowing character of rivers by precluding them from being dammed, while allowing the public to enjoy them. It encourages river management and promotes public participation in protecting streams.

As part of the celebration, the National Park Service released a new video highlighting a handful of ‘Wild and Scenic’ designated rivers in the Northeast – the Farmington, Sudbury, Assabet, Concord, and Musconetcong Rivers – along with the organizations and community volunteers who work together to protect and care for these rivers.

Princeton Hydro is proud to work with two of the river stewards featured in the video: Musconetcong Watershed Association (MWA) and Farmington River Watershed Association (FRWA).

The Musconetcong River:

Designated ‘Wild and Scenic’ in 2006, the Musconetcong River is a 45.7-mile-long tributary of the Delaware River in northwestern New Jersey.

Princeton Hydro has been working with MWA in the areas of river restoration, dam removal, and engineering consulting since 2003 when the efforts to remove the Gruendyke Mill Dam in Hackettstown, NJ began. To date, Princeton Hydro has worked with MWA to remove five dams on the Musconetcong River, the most recent being the Hughesville Dam.

As noted in the video, the removal of these dams, especially the Hughesville dam, was a major milestone in restoring migratory fish passage along the Musconetcong. Only a year after the completion of the dam removal, American shad returned to the “Musky” for the first time in 250 years.

“The direction the river is moving bodes well for its recovery,” said Princeton Hydro President Geoff Goll, P.E., who was interviewed in the 50th anniversary video. “This multidisciplinary approach using ecology and engineering, paired with a dynamic stakeholder partnership, lead to a successful river restoration, where native fish populations returned within a year. ”

The Farmington River:

The Upper Farmington River, designated as ‘Wild and Scenic’ in 1994, stretches 14-miles through Connecticut starting above Riverton through the New Hardford/Canton town line. The river is important for outdoor recreation and provides critical habitat for countless wildlife.

Credit: FWRA.orgBack in 2012, Princeton Hydro worked with the FRWA and its project partners to remove the Spoonville Dam. Built in 1899 on the site of a natural 25-foot drop in the riverbed, the dam was originally a hydropower facility. The hurricanes and flood of 1955 breached the dam, opening a 45-foot gap and scattering massive dam fragments in the riverbed downstream. The remnant of the main dam persisted for decades as a 128-foot long, 25-foot high obstacle in the channel. The river poured through the breach in a steep chute that stopped American shad from proceeding further upstream to spawn.

The project was completed, from initial site investigation through engineering assessment and final design, in just six months. The dam removal helped to restore historic fish migrations in the Farmington River (including the American shad) and increase recreation opportunities.

Wild & Scenic Rivers Act:

Credit: NPS.govAs of December 2014 (the last designation), the National ‘Wild and Scenic’ System protects 12,734 miles of 208 rivers in 40 states and the Commonwealth of Puerto Rico; this is a little more than one-quarter of 1% of the nation’s rivers. By comparison, more than 75,000 large dams across the country have modified at least 600,000 miles, or about 17%, of American rivers.

In honor of the 50th anniversary of the Act and in an effort to designate many more miles of river as ‘Wild and Scenic,’ four federal agencies and four nonprofit groups are coordinating nationwide events and outreach. Managing agencies are the Bureau of Land ManagementFish and Wildlife ServiceForest Service, and National Park Service, along with American RiversAmerican WhitewaterRiver Network and River Management Society. Go here for more info: www.wildandscenicrivers50.us.

Conservation Spotlight: FORTESCUE SALT MARSH AND AVALON TIDAL MARSH RESTORATION

HABITAT RESTORATION THROUGH APPLICATION OF DREDGED MATERIAL

New Jersey, like other coastal states, has been losing coastal wetland habitats to a combination of subsidence, erosion and sea level rise. The New Jersey Department of Environmental Protection received a grant from the National Fish and Wildlife Federation to address this issue and rejuvenate these critical habitats. Grantees were charged with providing increased resilience to natural infrastructure that will in turn increase the resiliency of coastal communities in the face of future storms like Hurricane Sandy.

As a consultant for GreenTrust Alliance, a land conservancy holding company, Princeton Hydro worked with several project partners, including NJDEP, the US Army Corps of Engineers, NJDOT, The Wetlands Institute, and The Nature Conservancy, to increase the marsh elevation to an optimal range where vegetation, and the wildlife that depends on it, can flourish. One of the techniques used for this project included the use of dredged material disposal placement, which involves using recycled sand and salt dredged from navigation channels to boost the elevation of the degraded marsh.

A media statement from NJDEP further explained the process, “sediments dredged from navigation channels and other areas are pumped onto eroding wetlands to raise their elevations enough to allow native marsh grasses to flourish or to create nesting habitats needed by some rare wildlife species. Healthy marshes with thick mats of native grasses can cushion the impact of storm surges, thereby reducing property damage.”

FORTESCUE SALT MARSH

The salt marsh at the Fortescue project site is part of the Fortescue Wildlife Management Area. The specific goal of the project was to restore and enhance the interior high and low marsh, coastal dune and beach habitats.

To achieve these habitat enhancements, the Princeton Hydro project team first established biological benchmarks of each targeted habitat type and evaluated them to determine the upper and lower elevational tolerances for target communities and plant species. Approximately 33,300 cubic yards of dredged materials were used to restore a degraded salt marsh, restore an eroded dune, and replenish Fortescue Beach. The eroded dune was replaced with a dune designed to meet target flood elevations and protect the marsh behind it against future damage. The dune was constructed using dredged sand, and, to prevent sediment from entering the waterways, a Filtrexx containment material was used.

AVALON TIDAL MARSH

This project site is a tidal marsh complex located within a back-bay estuary proximal to Stone Harbor and Avalon. Princeton Hydro and project partners aimed to enhance the marsh in order to achieve the primary goal of restoring the natural function of the tidal marsh complex.

Two main activities were conducted in order to apply the dredged material to the impaired marsh plain: 1.) the placement of a thin layer of material over targeted areas of existing salt marsh to increase marsh elevations, 2.) the concentrated placement of material to fill expanding pools by elevating the substrate to the same elevation as the adjacent marsh. In total, dredged material was distributed among eight distinct placement areas throughout the property’s 51.2 acres.

These coastal wetland restoration activities will help to prevent the subsidence-based marsh loss by filling isolated pockets of open water and increasing marsh platform elevation. In addition, the beneficial reuse of dredged material facilitates routine and post-storm dredging and improves the navigability of waterways throughout the U.S.

AQUATIC ORGANISM PASSAGE: A PRINCETON HYDRO BLOG SERIES

Welcome to the second installment of Princeton Hydro’s multi-part blog series about aquatic organism passage.

What you’ll learn:

  • How does promoting aquatic organism passage benefit ecosystems as a whole?
  • How can others, including people, benefit from aquatic organism passage?
  • How has Princeton Hydro supported it?

Photo by Princeton Hydro Founder Steve Souza

Fostering Ecological Balance in Food Webs

A major consequence of poorly designed culverts published in the NRCS' "Federal Stream Corridor Restoration Handbook"is the destabilization of food webs. Sufficient predators and prey must exist to maintain a balanced food web. For example, freshwater mussels (Unionidae) are a common snack among fish. A mussel’s life cycle involves using certain fish as a host for their larvae until these microscopic juveniles mature into their adult forms and drop off. During this period, the host fish will travel, effectively transporting a future food source with it.

In the presence of habitat fragmentation, the isolation of these symbiotic relationships can be devastating. Some mussel species rely on a small circle of fish species as their hosts, and conversely, some fish species rely on specific mussel species as their food. If a fish species is separated from its mussel partner, food shortages owing to a declining adult mussel population can occur.

Widespread Benefits to Flora, Fauna, and People

A shift in the 1980s recognized the importance of redesigning road-stream crossings for several reasons, including restoring aquatic organism passage and maintaining flood resiliency. Replacing culverts with larger structures that better facilitate the movement of both water and aquatic organisms benefit all species. Roads constructed over streams allow people to travel across natural landscapes while culverts that are fish-friendly convey water at a rate similar to the surrounding landscape, reducing scour in stream beds.

A man fly fishes as his dog sits by his side at Ken Lockwood Gorge, Hunterdon County. Photo from State of New Jersey website.

Fish, as well as semi-terrestrial organisms like crabs and salamanders, can take advantage of more natural stream environments and complete their migrations. Anglers appreciate healthy, plentiful fish populations nearly as much as the fish themselves. Recreation and economic growth also improve when streams regain the aquatic biological communities once lost through habitat fragmentation. According to USFWS, for every dollar spent on restoration through the Partners for Fish and Wildlife Program and Coastal Program Restoration Project, states gain $1.90 of economic activity. Stream restoration improves fish and wildlife habitat, which directly supports and enhances recreation opportunities for outdoor enthusiasts thus resulting in increased tourism-related spending and job growth.

Aquatic Organism Passage in Action at Princeton Hydro

Princeton Hydro recently completed a project to facilitate aquatic organism passage for river herring in Red Brook in Plymouth, Massachusetts. Read all about it here!

For an introduction to aquatic organism passage, be sure to check out the first post in this multipart-series.

Sources:

“Aquatic Organism Passage through Bridges and Culverts.” Flow. Vermont Department of Environmental Conservation’s Watershed Management Division, 31 Jan. 2014. Web. 14 Mar. 2017.

Hoffman, R.L., Dunham, J.B., and Hansen, B.P., eds., 2012, Aquatic organism passage at road-stream crossings— Synthesis and guidelines for effectiveness monitoring: U.S. Geological Survey Open-File Report 2012-1090, 64 p.

Jackson, S., 2003. “Design and Construction of Aquatic Organism Passage at Road-Stream Crossings: Ecological Considerations in the Design of River and Stream Crossings.” 20-29 International Conference of Ecology and Transportation, Lake Placid, New York.

Kilgore, Roger T., Bergendahl, Bart S., and Hotchkiss, Rollin H. Publication No. FHWAHIF-11-008 HEC-26. Culvert Design for Aquatic Organism Passage Hydraulic Engineering Circular Number 26. October 2010.

Michigan Natural Features Inventory. Freshwater Mussels of Michigan. Michigan State University, 2005.

 

Employee Spotlight: Meet Our New Team Members

Princeton Hydro is thrilled to announce the expansion of our growing business with the addition of 10 team members who possess a wealth of experience and qualifications in a variety of fields related to water resource management.

“The addition of these professionals is attributable to the successful teaming relationships we have developed and grown with our clients, and is our commitment to investing in meeting their respective missions,” said Princeton Hydro President Geoff Goll.  “We’re proud have such talented experts in their fields join our team, who also share our ideals of creativity, ingenuity, quality, and teamwork.”

 

Meet Our New Team Members:

 

Emily Bjorhus, Environmental Scientist

Emily is an Environmental Scientist with expertise in environmental permitting and compliance, wetland and stream ecology, and stormwater management. She coordinates, leads and assists with state environmental permitting programs and NEPA compliance and documentation, including preparation of Federal and state permit applications, Endangered Species Act 7 consultations, and Federal Energy Regulatory Commission environmental review processes. She also conducts a variety of environmental field investigations such as wetland and waterbody delineations.  Read more.

 

Stephen Duda, EIT, Project Engineer

Stephen is a civil engineer with expertise in grading and stormwater design, drafting, permitting, soil testing and construction inspection.  He has experience working on multiple aspects of land development projects, construction management and  municipal engineering.  He holds an an Associate degree in General Engineering and a second in Engineering Technologies/CAD, as well as a B.S. in Civil Engineering from Rowan University. Read more. 

 

 

Shaun Flite, EIT, Civil Engineer

Shaun is a Civil Engineer who has provided over 5 years of consulting services to assist with planning, design, and permitting of projects involving land development, stormwater management, water & wastewater utility systems, and pollution control. He is a graduate of Penn State where he earned his Bachelor of Science in Environmental Engineering, with an emphasis in hydrology, hydraulics, and water quality/treatment. Read more.

 

 

George Fowler, PE,  Water Resource Engineer

George is a Water Resource Engineer with an expertise in natural system’s features and functions, river engineering designs and geomorphic investigations.  Well versed in U.S. Army Corps of Engineers and NRCS engineering manuals, he seeks to work with people who desire river engineering solutions that follow sound engineering practices, improve the aquatic environment and have low to no maintenance costs.  His designs have ranged from traditional flood protection features (earthen berms and dams) to fish habitat enhancement (engineered log jams and roughened log stream bank toes).  Read more.

 

Casey Hurt, PE, Geotechnical Project Manager

Casey is a licensed Professional Engineer with over 6 years of experience working in Geotechnical Engineering. He maintains a wide range of professional responsibilities for the firm including subsurface explorations, development of geotechnical laboratory testing programs, shallow and deep foundation analysis and design, settlement evaluation, earth retaining system design, slope stability analyses, and management of geotechnical field operations. He has extensive experience with stormwater infiltration and dam safety compliance. Read more.

 

Elizabeth Kowalsky, Assistant Coordinator

Liz earned her B.A. in Communications with a concentration in Public Relations from Stockton University. She has a background in working with public relations firms in the areas of technology, pharmaceuticals, outdoor products/safety and family wellness. Read more.

 

 

 

Dana Patterson, Communications Strategist

Dana is a passionate environmental communicator who brings a strong mix of diverse stakeholder engagement experience, coupled with values-based communication strategy. She specializes branding, marketing, and digital media strategy, and strives to enhance the mission and values of Princeton Hydro. She earned her Master of Environmental Management from Yale University’s School of Forestry and Environmental Studies where she focused on strategies for climate change and wildlife conservation communication.  Read more.

 

 

Natalie Rodrigues, EIT, CPESC-IT, Staff Engineer

Natalie is a staff engineer with a focus in water resources engineering. She assists with various projects that span several topics, including stormwater management, ecosystem restoration, and dam safety. Natalie is a recent graduate from SUNY College of Environmental Science and Forestry where she earned her Bachelor of Science in Environmental Resources Engineering with a focus in water resources.  Read more.

 

 

Jack Szczepanski, PhD, Senior Aquatics Scientist

Jack has a range of experience from establishing baseline assessment for fish populations to managing coastal wetland resilience projects to developing ecosystem-wide monitoring plans. Jack earned his PhD from URI by studying fish feeding ecology and trophic dynamics across marine ecosystems. He also has academic background in biomechanics, wetland and estuarine ecology, and natural resource applications of conservation biology.  Read more.

 

 

Thomas Wilkes, PE, Senior Project Manager

Tom is a Professional Civil Engineer specializing in municipal, civil, and environmental engineering consulting services primarily in Pennsylvania and Delaware. He is an accomplished and multi-talented Municipal Engineer with more than 10 years of significant experience in planning, scheduling, managing and administration of public works projects, and providing maintenance support for municipal utility systems (stormwater, sanitary, sewer, and water). Read more.

 

 

 

Stay tuned for more!

Musconetcong Watershed Association Presents Princeton Hydro President with Prestigious “Friend of the River” Award

 

Musconetcong Watershed Association (MWA) held a dinner to celebrate its 25th anniversary as well as the 150th anniversary of the Asbury Grist Mill, which the MWA is working to restore. The evening included a cocktail hour, a buffet dinner, silent auction, remarks by the MWA President Tish Lascelle and Executive Director Alan Hunt, and a presentation of awards.

The MWA presented Princeton Hydro PresiPhoto by Tish Lascelle, President, Musconetcong Watershed Associationdent Geoff Goll, PE with the “Friend of the River” Award. This award, which has only been given seven times in MWA’s 25 years of service, recognizes individuals who have made a significant and sustainable difference in the Watershed and helped to advance its mission. Recipients of the Award have also demonstrated outstanding leadership through their volunteer efforts or partnerships with MWA.

Geoff was honored to receive the award alongside Paul Kenney of the National Park Service and Richard C. Cotton, a Managing Partner of the Hawk Pointe Golf Club and Asbury Farms Real Estate. Paul was assigned the Musconetcong River in late 2003 and was instrumental in obtaining the Musconetcong River’s Wild and Scenic Designation in 2006. He has continued to be an excellent resource of the National Park Service.  Richard is a founding member of the MWA’s Board of Trustee’s and continues to serve on the Board. He has dedicated his professional life to striking a balance between economic growth with environmental protection.

Geoff has been working with MWA in the areas of river restoration, dam removal, and engineering consulting since 2003, when the efforts to remove the Gruendyke Mill Dam in Hackettstown, NJ began. He has since worked with the Princeton Hydro team to remove five dams on the Musconetcong River, the most recent being the Hughesville Dam

MWA is an independent, non-profit organization dedicated to protecting and improving the quality of the Musconetcong River and its Watershed, including its natural and cultural resources. Members of the organization are part of a network of individuals, families and companies that care about the Musconetcong River and its watershed, and are dedicated to improving the watershed resources through public education and awareness programs, river water quality monitoring, promotion of sustainable land management practices and community involvement.

During the anniversary dinner, participants also got a sneak peek of a new video from the National Park Service that is set for public release in 2018. The video celebrates the upcoming 50th anniversary of the Federal Wild and Scenic Rivers Act, under which the Musconetcong River is protected, and explores the importance of free-flowing rivers and why Americans treasure them. Representing Princeton Hydro at the awards dinner were Vice President Mark Gallagher, his wife Jennifer, Geoff and his wife Amy, and Director of Engineering Services Mary Paist-Goldman, PE.

 

 

 

 

 

 

 

 

 

 

 

Princeton Hydro Founder Invited to Speak at EPA’s Harmful Algal Blooms Workshop

Princeton Hydro Founder Dr. Steve Souza was an invited speaker at the USEPA Region 2 Freshwater Harmful Algal Blooms (HABs) and Public Drinking Water Systems workshop last week in Manhattan. The objective of the workshop was to share information about the monitoring and assessment of freshwater HABs and the efforts to minimize their effect on public drinking water and the recreational uses of lakes.

Steve’s presentation focused on the proactive management of HABs, providing useful tips for and real-world examples of how to address HABs before they manifest, and, if a HAB does manifest, how to prevent it from further exacerbating water quality and cyanotoxin problems.

The workshop was well attended with 80 people on site and 40 others participating via webinar link. Steve was joined by nine other invited speakers, most of whom were representing the USEPA, NYSDEC and NJDEP, who gave presentations on a variety of HABs related topics, including the optimization of water treatment operations to minimize cyanotoxin risks surveillance and assessment of HABs, and communicating HABs risks in recreational lakes and drinking water reservoirs.

If you’re interested in learning more about HABs, you can view a complete copy of Steve’s presentation, titled Proactive Management of Harmful Algae Blooms in Drinking Water and Recreational Waterbodies, by clicking the image below. Please contact us anytime to discuss how Princeton Hydro’s Invasive Weed and Algae Management Services can be of service to you.

The USEPA Region 2 serves New Jersey, New York, Puerto Rico, the U.S. Virgin Islands, and eight tribal nations. Get more info on key issues and initiatives in USEPA Region 2.

 

 

Princeton Hydro Participates in Rutgers Engineering Honors Council Competition

Princeton Hydro President Geoff Goll, P.E. participated as an alumni judge in the Rutgers Engineering Honors Council (REHC) Annual Case Competition.

The REHC Case Competition is an annual event in which students are given a case detailing a Rutgers-related issue and have a limited amount of time to analyze the case problem, develop a solution, and present their plans to a panel of alumni judges.

The judges critique the group and individuals on presentation, creativity, participation, feasibility of solution, and additional criteria. The competition is divided into two tiers, where the winners of each grouping of presentations then present to determine a final winner.

Over the past three years, more than one hundred students have participated and have included deans, alumni, administrators, and faculty in the development of the competition. This year, the judging panel incorporated four alumni, including Goll, who judged separate groups of three teams, and then joined together with the other judges to critique the final round of presentations.   

“It was a truly wonderful experience,” said Goll. “It’s so encouraging to see such eager and bright young minds that are on their way to becoming future engineering leaders.”

REHC, founded in 2011, is composed of Honors Academy and Honors College representatives and honor society presidents to provide a uniform voice to all sectors of the honors community in the School of Engineering. Students find unique opportunities to be mentored by industry professionals, engage with successful alumni, and exchange talents with their peers. 

Goeff Goll, Civil Engineering Class of 1990, brings extensive experience in water resources and geotechnical engineering to the table. He is highly experienced in stream restoration, dam removal, the design of large retaining structures, and building foundations and stormwater management systems.

 

Aquatic Organism Passage: A Princeton Hydro Blog Series

Introducing part one of a multi-part blog series about aquatic organism passage
What you’ll learn:
  • What is aquatic organism passage?
  • Why is it important?
  • How does Princeton Hydro support it?

This photo from NYS DEC demonstrates a well-designed stream crossing.

Since the US government began allotting funds for building roads in U.S. national forests in the late 1920s, hundreds of thousands of culverts were built across the country. Culverts, or drainage structures that convey water underneath a barrier such as a road or railroad, were originally built with the intention of moving water quickly and efficiently. While this goal was met, many migratory fish and other aquatic organisms could not overcome the culverts’ high-velocity flows, sending them away from their migratory destinations. If the culvert was perched, or elevated above the water surface, it would require the migratory aquatic animals to both leap upwards and fight the unnaturally fast stream current to continue their journeys. Additionally, turbulence, low flows, and debris challenged the movement of aquatic organisms.

Thus, the goal of aquatic organism passage (AOP) is to maintain connectivity by allowing aquatic organisms to migrate upstream or downstream under roads. AOP “has a profound influence on the movement, distribution and abundance of populations of aquatic species in rivers and streams”. These aforementioned species include “fish, aquatic reptiles and amphibians, and the insects that live in the stream bed and are the food source for fish”.

This photo from NYS DEC demonstrates a poorly-designed stream crossing.

A poorly designed culvert can harm fish populations in multiple ways. If sturgeon aren’t able to surpass it, habitat fragmentation prevails. And so, a once-connected habitat for thousands of sturgeon breaks into isolated areas where a few hundred now live. When the population was in the thousands, a disease that wiped out 80% of the population would still leave a viable number of individuals left to survive and mate; a population of a few hundred will be severely hurt by such an event. In sum, habitat fragmentation raises the risk of local extinction (extirpation) as well as extinction in general.

The splintering of a large population into several smaller ones can also leave species more vulnerable to invasive species. Generally, the greater the biodiversity harbored in a population, the stronger its response will be against a disturbance. A dwindling community of a few hundred herring will likely succumb to an invasive who preys on it while a larger, more robust community of a few thousand herring has a greater chance of containing some individuals who can outcompete the invasive.

Aquatic Organism Passage in Action at Princeton Hydro

Princeton Hydro recently teamed up with Trout Unlimited to reconnect streams within a prized central-Pennsylvanian trout fishery.  Our team enabled aquatic organism passage by replacing two culverts in Pennsylvania’s Cross Fork Creek. Read about it here!

Sources:

“Aquatic Organism Passage through Bridges and Culverts.” Flow. Vermont Department of Environmental Conservation’s Watershed Management Division, 31 Jan. 2014. Web. 14 Mar. 2017.

Hoffman, R.L., Dunham, J.B., and Hansen, B.P., eds., 2012, Aquatic organism passage at road-stream crossings— Synthesis and guidelines for effectiveness monitoring: US Geological Survey Open-File Report 2012-1090, 64p.

Jackson, S., 2003. “Design and Construction of Aquatic Organism Passage at Road-Stream Crossings: Ecological Considerations in the Design of River and Stream Crossings.” 20-29 International Conference of Ecology and Transportation, Lake Placid, New York.

Kilgore, Roger T., Bergendahl, Bart S., and Hotchkiss, Rollin H. Publication No. FHWAHIF-11-008 HEC-26. Culvert Design for Aquatic Organism Passage Hydraulic Engineering Circular Number 26. October 2010.

Princeton Hydro Founder Receives Lake Management Achievement Award

We’re thrilled to announce that Princeton Hydro Founder Dr. Stephen J Souza received the North American Lake Management Society’s “2017 Lake Management Success Stories Award” for his work with Lake Mohawk.

While accepting his award Dr. Souza stated, “this would not have been possible had it not been for the foresight of the Lake Mohawk Country Club and the support we have received over the years from the Lake Board, the current General Manager Barbara Wortman, Steve Waehler and the Lake Committee, Ernie Hofer and Gene DePerz of the Lake Mohawk Preservation Foundation, and of course the late Fran Smith.”

Steve went on to thank his staff at Princeton Hydro, especially Chris Mikolajczyk and Dr. Fred Lubnow, for their efforts over the years “collecting and analyzing a variety of lake data and implementing the innovative restoration practices responsible for the lake’s water quality improvements.”

Since 1990, Dr. Souza has worked with the Lake Mohawk Country Club and the Lake Mohawk Preservation Foundation to develop and implement successful lake management strategies to restore and protect the health of the lake and its surrounding watershed.

The NALMS award recognizes an individual or team with notable accomplishment of lake and reservoir management efforts that demonstrate improvements in lake/reservoir condition or watershed management in a cost-effective manner.

Many thanks to Lake Mohawk for the continued partnership and steadfast commitment to water quality. And, thanks to NALMS for bestowing Dr. Souza with this great honor.

Click here to see the complete 2017 awards recap from NALMS.

Princeton Hydro Team Trained in USACE MII Cost Estimating Software

Congratulations to Amy McNamara and James Hunt of Princeton Hydro who received their certificates of completion for the in-depth training of the October 2017 MCACES (Micro-Computer Aided Cost Estimating System), 2nd Generation (MII) Training Course in Atlanta, Georgia. MCACES is an integrated cost estimating system that meets the U.S. Army Corps of Engineers (USACE) requirements for preparing cost estimates for civil works projects.

This 32-hour course provided an in-depth look at the software application and its components which are used to build detailed construction cost estimates. In a classroom setting, Amy and Jim learned how to prepare and execute computerized cost estimates using parametric worksheets, quantity linking, and assemblies. Our engineering team now has the capability to navigate through the MII software and libraries to create a project, cost items, crews, labor and equipment. Amy and Jim understand how to work with database functions to create site-specific unit prices, modify equipment costs for project specific circumstances, and adjust crew for overtime and shift differential.

Now being used by many of the USACE districts, it will soon be a requirement for all USACE districts to use MII, as well as all architect-engineering (A-E) firms performing design work for the USACE.

“We are looking forward to using the program to help our Federal partners meet their mission objectives,” stated Geoff Goll, President of Princeton Hydro. “The completion of such training efforts continues our commitment to supporting the U.S. Army Corps of Engineers’ efforts in the North Atlantic Division and beyond.”