Barnegat “Clean Water, Beautiful Bay” Project wins Governor’s Environmental Excellence Award

The American Littoral Society was awarded the Governor’s Environmental Excellence Award in the Water Resources category this year for their Clean Water, Beautiful Bay projects in Barnegat Bay.

According to the Barnegat Bay Partnership, over 33% of the Barnegat Bay watershed has been altered to urban land cover. The construction of communities, roads and business has greatly increased the total amount of impervious surfaces in the watershed. With the added impervious cover has come a steady increase in the amount of nutrients, sediment, pathogens and other contaminants transported into the Bay by runoff. This accelerated the degradation of the Bay’s water quality and triggered changes to the Bay’s ecology.

Recognizing the importance of the Barnegat Bay, the American Littoral Society proposed green infrastructure measures to decrease runoff volume and nutrient loading to the bay and its tributaries.  Princeton Hydro was contracted by American Littoral Society to design four projects and provide oversight on the construction of the bioretention basins, rain gardens, porous pavement, etc. The projects were funded by the largest 319 grant ever administered by the NJDEP, totaling around $1 million. The project aimed to:

  1. Improve the water quality of Barnegat Bay by reducing the influx of nitrogen and other pollutants originating from the Long Swamp Creek and Lower Toms River watersheds. And, therefore, improve the water quality of both Long Swamp Creek and Lower Toms River, thus moving them closer to removal from the NJDEP’s 303D list of impaired waters.
  2. Demonstrate that relatively low-cost, stormwater system retrofits are capable of decreasing runoff volume, increasing stormwater recharge, and removing nutrients, and can be effectively implemented in even highly developed watersheds.
  3. Educate the public, elected and appointed officials and public work personnel of the types and benefits of bioretention, biodetention and infiltration stormwater management techniques.

From our team, Dr. Steve Souza and Paul Cooper worked to develop a unique Scoring Matrix for the selection of best management practices for retrofit projects. They have been asked several times to present on the matrix and demonstrate how to beneficially utilize it. In addition to design, Princeton Hydro participated in much of the public outreach for these projects, including giving presentations, leading workshops, and helping high school students plant vegetation around their school.

RWJ Barnabas Community Medical Center Educational Sign

According to NJDEP, the Clean Water, Beautiful Bay projects were successful in reducing flooding in a private residential homeowner community, improving a stormwater basin and public open space area at a hospital, introducing golf course staff and golfers to environmentally friendly golf course management practices, and engaging high school students in planting projects on school property.  The projects demonstrated that green infrastructure construction projects can reduce flooding and water pollution at business, community, school and public recreation locations, and can be publicly accepted and valued for the environmentally protective and restorative benefits they provide to Barnegat Bay.

Last year, the American Littoral Society’s Barnegat Bay Green Infrastructure Project was named “Project of the Year” by The American Society of Civil Engineers Central Jersey Branch.

For more information on Princeton Hydro’s green infrastructure and stormwater management services, please visit: bit.ly/stormwatermgmt 

Levee Inspections Along the Elizabeth River

Ursino Dam on the Elizabeth River in Union County, New Jersey is one of the sites Princeton Hydro inspected for flood control, ensuring the system is providing the level of protection it was designed to deliver.

By Brendon Achey, Princeton Hydro’s Lead Geologist; Soils Laboratory Manager; Project Manager

Located 20 miles southwest of New York City, the City of Elizabeth, New Jersey, is situated along the Elizabeth River. For the city’s 125,000 residents, living along the river has many benefits, but the benefits are not without flood risk. In order to manage the risk associated with potential flooding, a series of levees and floodwalls were installed along the banks of the Elizabeth River. A levee is an embankment that is constructed to prevent overflow from a river. They are a crucial element for protecting cities from disastrous flooding, and as such they require periodic inspections to ensure that all components are functioning properly.

Princeton Hydro was contracted by the U.S. Army Corps of Engineers, New York District (USACE NYD) to perform rigorous flood control project inspections (i.e., “Periodic Inspections”) for the four levee systems located along the Elizabeth River.  For this project, our team inspected over 17,000 linear feet of levee embankment and 2,500 linear feet of floodwall.

Levee systems are comprised of components which collectively provide flood risk management to a defined area. These components can include levees, structural floodwalls, closure gates, pumping stations, culverts, and interior drainage works. These components are interconnected and collectively ensure the protection of development and/or infrastructure that is situated within a floodplain. Failure of just one critical component within a system could constitute an overall system failure. During Hurricane Katrina, for example, dozens of levees were destroyed, leaving the Louisiana coast with billions of dollars in damage and over one thousand lives lost.

Periodic inspections are necessary in order to ensure a levee system will perform as expected. They are also needed to identify deficiencies in the levee, or areas that need monitoring or immediate repair. Critically important maintenance activities include continuously assessing the integrity of the levee system to identify changes over time, collecting information to help inform decisions about future actions, and providing the public with information about the levees on which they rely.

Levee Inspection Process

Periodic inspections are extremely comprehensive and include three key steps: data collection, field inspection, and development of a final report.

Data Collection

Prior to conducting field inspections, Princeton Hydro’s engineers evaluated the Elizabeth River levee system’s documented design criteria. This evaluation was conducted to assess the ability of each feature and the overall system to function as authorized, and also to identify any potential need to update the system design. Princeton Hydro teamed with HDR to carry out the inspections. A comprehensive review of existing data on operation and maintenance, previous inspections, emergency action plans, and flood fighting records was also performed.

Field Inspection

The Princeton Hydro field inspection team consisted of geotechnical, water resource, mechanical, structural, and electrical engineers. Detailed inspections were performed on each segment of each levee system.  This included the detailed inspection and documentation of over 17,000 linear feet of levee embankment, over 2,500 linear feet of floodwall, four pumping stations, 29 interior drainage structures, five closure gates, and various other encroachments and facilities. Princeton Hydro identified, evaluated, and rated the state of each of these system elements. As part of this field inspection task, Princeton Hydro utilized a state-of-the-art tablet and GIS technology in order to field-locate inspection points and record item ratings. This digital collection of data helps expedite data processing and ensures higher levels of accuracy.

Development of Final Report

Princeton Hydro prepared a Periodic Inspection Report for each of the four levee systems inspected, which included the results of the design document review, methods and results of the field inspection, a summary of areas/items of concern, a preliminary engineering assessment of causes of distress or abnormal conditions, and recommendations for remedial actions to address identified concerns. Final report development included briefing the USACE Levee Safety Officer (LSO) on our inspection findings, assigned ratings, and recommendations.

Levee inspections are vital to the longevity of levee systems and the safety of the communities they protect. By providing the municipalities with detailed inspection reports, effective repair and management programs can be designed and implemented efficiently. This helps to ensure the levee systems are providing the level of protection that they were designed to deliver.

Princeton Hydro’s Geoscience and Water Resource Engineering teams perform levee and dam inspections throughout the Mid-Atlantic and New England Regions. For more info, visit: http://bit.ly/PHEngineering

Brendon Achey provides a wide range of technical skills and services for Princeton Hydro. His responsibilities include: project management, preparation and quality control of technical deliverables, geotechnical investigations and analysis, groundwater hydrology, soil sampling plan design and implementation, and site characterization. He is responsible for managing the daily operations of the AASHTO accredited and USACE validated soil testing laboratory. In addition to laboratory testing and analysis, Brendon is responsible for analyzing results in support of geotechnical and stormwater management design evaluations. This may include bearing capacity and settlement analysis of both shallow and deep foundations, retaining wall design, and recommendations for stormwater management practices.

Understanding and Implementing Green Infrastructure

By Tucker Simmons and Dr. Clay Emerson, PE, CFM

People generally think of green infrastructure as an eco-friendly way to handle stormwater runoff. While many green infrastructure elements are planned and managed specifically for stormwater control, the capabilities and benefits are far reaching. In this piece, we’ll provide an in-depth look at all that green infrastructure encompasses, best practices, and real-world examples of green infrastructure projects in action.

WHAT IS GREEN INFRASTRUCTURE?

Defined as an approach to water management that protects, restores, or mimics the natural water cycle, green infrastructure can be implemented for large scale projects and small scale projects alike.

Unlike conventional, or “gray” infrastructure, green infrastructure uses vegetation, soil, and other natural components to manage stormwater and generate healthier urban environments. Green infrastructure systems mimic natural hydrology to take advantage of interception, evapotranspiration and infiltration of stormwater runoff at its source. Examples include permeable pavers, rain gardens, bioretention basins, rain barrels, and tree boxes.

WHY IS GREEN INFRASTRUCTURE BENEFICIAL?

Green infrastructure provides various benefits, including cleaning and conserving water, reducing flooding, improving public health, providing jobs, beautifying neighborhoods, supporting wildlife and providing economic benefits at both the larger community and individual household level. Let’s take a closer look at some of the primary benefits:

Prevents Flooding: By absorbing and slowing the flow of water, green infrastructure can reduce the burden on storm sewer systems and mitigate localized flooding.

Saves Money: While some green infrastructure designs may require the same or greater initial investment than conventional strategies, green design methods provide a big return in reducing costs over the long-term.

Improves Water Quality: Through natural absorption and filtration processes, green infrastructure significantly reduces stormwater runoff volume, decreases the pollutants and particulates within the stormwater, and improves the quality of the runoff flowing into surrounding water bodies.

Improves Air Quality: Green infrastructure techniques like tree boxes, green roofs and vegetative barriers have long been associated with improving air quality. Urban tree boxes help shade surfaces, effectively putting moisture into the air while reducing greenhouse gases. Trees mitigate heat and air pollution, both cooling and cleaning the air.

Enhances Aesthetics: Many green infrastructure practices utilize native plants and trees to improve runoff absorption and reduce stormwater pollution. This vegetation can provide a sound barrier or privacy screen for properties, and enhances the overall aesthetics of the surrounding environment. 

Increases Property Values: Research shows that property values increase when trees and other vegetation are present in urban areas. Planting trees can increase property values by as much as 15%.

LARGE-SCALE GREEN INFRASTRUCTURE IMPLEMENTATION:

With the use of proper design techniques, green infrastructure can be applied almost anywhere and is especially beneficial in urban areas. In developed environments, unmanaged stormwater creates two major issues: one related to the volume and timing of stormwater runoff (flooding) and the other related to pollutants the water carries. Green Infrastructure in urban environments can recharge groundwater, decrease runoff, improve water quality, and restore aquatic habitats while controlling flooding.

Across the United States, more than 700 cities utilize combined sewer systems (CSS) to collect and convey both sanitary sewage and stormwater to wastewater treatment facilities. During dry weather, all wastewater flows are conveyed to a sewage treatment plant where it receives appropriate treatment before it is discharged to the waterway. However, during heavy rainfall or significant snowmelt, the additional flow exceeds the capacity of the system resulting in a discharge of untreated sewage and stormwater to the waterway; this discharge is referred to as a combined sewer overflow (CSOs). For many cities with CSS, CSOs remain one of the greatest challenges to meeting water quality standards. Green infrastructure practices mimic natural hydrologic processes to reduce the quantity and/or rate of stormwater flows into the CSS.

New Jersey, as part of the 2012 USEPA’s Integrated Municipal Stormwater and Wastewater Planning Approach Framework, utilized green infrastructure as one of the main components in managing its CSS and reducing CSOs. Because of the flexibility of green infrastructure in design performance, it can reduce and mitigate localized flooding and sewer back-ups while also reducing CSOs. An integrated plan that addresses both overflows and flooding can often be more cost-effective than addressing these issues separately. New Jersey, in addition to meeting its CSO reduction goals, is using green infrastructure throughout the sewershed to build resilience to large storm events and improve stormwater management.

Stormwater planters installed by the Philadelphia Water Department

Philadelphia takes advantage of numerous green stormwater infrastructure programs such as Green Streets, Green Schools, and Green Parking. There are a wide variety of green infrastructure practices that Philadelphia is using to decrease stormwater runoff throughout the entire city. After just five years of implementing the Green City, Green Waterplan, Philadelphia has reduced the stormwater pollution entering its waterways by 85%. Using over 1,100 green stormwater tools (i.e. CSO, living landscapes, permeable surfaces, etc.), in just one year, Philadelphia was able to prevent over 1.7 billion gallons of polluted water from entering their rivers and streams.

New York City is using a green infrastructure program, led by its Department of Environmental Protection, that utilizes multiple green infrastructure practices to promote the natural movement of water while preventing polluted stormwater runoff from entering sewer systems and surrounding waterbodies. While attaining this goal, the green infrastructure also provides improvements in water and air quality, as well as improves the aesthetics of the streets and neighborhoods. According to the NYC Green Infrastructure Plan, “By 2030, we estimate that New Yorkers will receive between $139 million and $418 million in additional benefits such as reduced energy bills, increased property values, and improved health.”

SMALL-SCALE GREEN INFRASTRUCTURE IMPLEMENTATION:

Green infrastructure techniques are extremely beneficial on every scale. Residential homes and neighborhoods can benefit from the implementation of green infrastructure in more ways than many people realize. There are a wide variety of green infrastructure projects that can be completed with a relatively small time and financial investment. Many of us at Princeton Hydro have incorporated green infrastructure practices into our homes and properties. Here’s a look at some of those projects in action:

Dr. Steve Souza, a founding principal of Princeton Hydro, installed rain gardens throughout his property utilizing native, drought-resistant, pollinator-attracting plants. The rain gardens are designed to capture and infiltrate rainwater runoff from the roof, driveway, patio and lawn.

Princeton Hydro’s President Geoffrey Goll, P.E. built an infiltration trench in his backyard. An infiltration trench is a type of best management practice (BMP) that is used to manage stormwater runoff, prevent flooding and downstream erosion, and improve water quality in adjacent waterways. 

And, in the front yard, Geoffrey installed a variety of wildflower plantings.

MUNICIPAL TOOLKIT

An interactive website toolkit was recently launched by New Jersey Future to help municipalities across the state incorporate green infrastructure projects into their communities. For this project, Princeton Hydro’s engineers and scientists provided real-world examples integrating green infrastructure into development in order to bring to light the benefits and importance of investing in green infrastructure at the local level. The New Jersey Green Infrastructure Municipal Toolkit provides expert information on planning, implementing, and sustaining green infrastructure to manage stormwater. This toolkit acts as a one-stop resource for community leaders who want to sustainably manage stormwater, reduce localized flooding, and improve water quality.

GET STARTED

Since its inception, Princeton Hydro has been a leader in innovative, cost-effective, and environmentally sound stormwater management systems. Long before the term “green infrastructure” was part of the design community’s lexicon, the firm’s engineers were integrating stormwater management with natural systems to fulfill such diverse objectives as flood control, water quality protection, and pollutant reduction. Princeton Hydro has developed regional nonpoint source pollutant budgets for over 100 waterways. The preparation of stormwater management plans and design of stormwater management systems for pollutant reduction is an integral part of many of the firm’s projects.

Interested in working with us on your next Green Infrastructure project? Contact us here.


Tucker Simmons, Water Resources Intern

Tucker is a Civil and Environmental Engineering major at Rowan University focusing on Water Resources Engineering. He is the President and player of the Rowan University Men’s DII Ice Hockey Team. His Junior Clinic experience includes the study of Bio-Cemented sand and the Remote Sensing of Landfill Fires. In the future, Tucker hopes to work on creating a more sustainable environment. Tucker enjoys playing ice hockey, being with friends and family, and exercising.

 

Clay Emerson, Senior Project Manager

Clay’s areas of expertise include hydrologic and hydraulic analysis, stormwater management and infiltration, nonpoint source (NPS) pollution, watershed modeling, groundwater hydrology/modeling, and water quality and quantity monitoring at both the individual site and watershed scales. His educational and work experience includes a substantial amount of crossover between engineering and environmental science applications. He has specific expertise in the field of stormwater infiltration and has conducted extensive research on the NPS pollution control and water quantity control performance of stormwater BMPs. He regularly disseminates his monitoring results through numerous peer-reviewed journal publications, magazine articles, and presentations.

 

*FREE* Download: Using Flood Models to Mitigate Flood Risk

Back in September, NEIWPCC offered a free research webinar on modeling and flood mitigation recommendations for a forested and urban Hudson River tributary watershed. The webinar looked at the Moodna Creek Watershed and Flood Mitigation Assessment and described how flood models were used to inform recommendations for reducing and mitigating existing and anticipated flood risk. This free webinar was hosted by our Environmental Scientist & GIS Manager, Christiana Pollack, GISP, CFM, and Jessica Jahre, CFM, AICP, a Planner with the New Jersey Department of Environmental Protection.

Pollack and Jahre, authors of the assessment, described how they used flood models to inform recommendations for reducing and mitigating existing/anticipated flood risk in the Moodna Creek Watershed. The flood mitigation assessment was conducted by Princeton Hydro and GreenVest, and funded by NEIWPCC through the New York Department of Environmental Conservation’s Hudson River Estuary Program.

If you missed the webinar, but are still interested in flood mitigation and this study, you can download a PDF of the Powerpoint below. With informative graphics and intriguing photos, this presentation will introduce you to flood mitigation strategies and techniques for many different needs.Princeton Hydro specializes in flood planning, policy, analysis, design and risk mitigation services.  To learn more our floodplain management services, visit: bit.ly/floodmanagement

Two-Part Blog Series: Flood Assessment, Mitigation & Management

In this two part blog series, we showcase our work in the Moodna Creek Watershed in order to explore some of the concepts and methods used to estimate flood risk for existing conditions and the year 2050 and develop a flood management strategy (Part One), and traditional engineering and natural systems solutions used to manage and reduce flood risk (Part Two).

Part One: Flood Assessment & Mitigation Analysis in the Moodna Creek Watershed

The greater Moodna Creek watershed covers 180 square miles of eastern Orange County, NY. The watershed includes 22 municipalities and hundreds of streams before joining the Hudson River. This region has seen tremendous growth in recent years with the expansion of regional transit networks and critical infrastructure.

The Moodna Creek watershed can be split into two sub-basins — the Upper Moodna Creek and the Lower Moodna Creek. In the span of 15 months, Hurricane Irene, Tropical Storm Lee, and Hurricane Sandy each have caused significant flooding throughout the Moodna Creek watershed, damaging public facilities, roadways, and private properties. Both sub-basin communities have noted a concern about increased flood risk as more development occurs.

As global temperatures rise, climate models are predicting more intense rainfall events. And, the flood risk for communities along waterways — like the Moodna Creek watershed — will likely increase as time passes. In order to understand existing and future risk from flood events in this flood-prone area, a flood risk management strategy needed to be developed. The strategy uses a cost-benefit analysis to review the feasibility of each measure and the overall impact in reducing flood risks.

With funds provided from a 2016 grant program sponsored by the New England Interstate Waters Pollution Control Commission (NEIWPCC) and the New York State Department of Environmental Conservation’s (NYCDEC) Hudson River Estuary Program (HEP), Princeton Hydro along with a variety of project partners completed a flood assessment and flood mitigation analysis specific to the Lower Moodna Creek watershed.

Let’s take a closer look at our work with the Lower Moodna Creek watershed, and explore some of the methods used to estimate flood risk and develop a flood management strategy:

Lower Moodna Creek Watershed Flood Assessment & Analysis

The primary Lower Moodna Creek project goals were to assess flood vulnerabilities and propose flood mitigation solutions that consider both traditional engineering strategies and natural systems solution approaches (land preservation, wetland/forest restoration, green infrastructure and green water management). The project team focused on ways to use the natural environment to reduce risk.  Instead of strictly focusing on just Moonda Creek, the team took a holistic approach which included all areas that drain into the river too. These analyses were incorporated into a Flood Assessment Master Plan and Flood Mitigation Plan, which will serve as a road map to reducing flooding issues within the watershed.

Managing Flood Risk

The first step in managing flood risk is to understand what type of exposure the communities face. The Moodna Creek project modeled flooding within the watershed during normal rain events, extreme rain events, and future rain events with two primary goals in mind:

Visual assessment being conducted in flood-prone areas of Moodna Creek Watershed.

  • Assess the facilities, infrastructure, and urban development that are at risk from flooding along the Moodna Creek and its tributaries within the study area.
  • Develop a series of hydrologic and hydraulic models to assess the extent of potential flooding from the 10-year (10%), 100-year (1%),  and 500-year (0.2%) storm recurrence intervals within the study area. The modeling includes flows for these storm events under existing conditions and also hypothetical scenarios with predicted increases in precipitation and population growth.

 

The project team used these models and data to propose and evaluate a series of design measures that help reduce and mitigate existing and anticipated flood risk within the study area. Where possible, the proposed solutions prioritized approaches that protect and/or mirror natural flood protection mechanisms within the watershed such as floodplain re-connection and wetland establishment. In addition to flood protection, the project components also provide water quality protection, aesthetics and recreation, pollutant reduction, and wildlife habitat creation.

Land Use and Zoning

Zoning is a powerful tool that determines a region’s exposure to hazards and risk. Zoning determines which uses are permitted, or encouraged, to be built in moderate and high-risk areas. It also prevents certain uses, such as critical facilities, from being built in those areas. Zoning is also a determinant of a region’s character and identity.

In the Lower Moodna Creek watershed, a large majority (82%) of land is zoned for residential use. However, in the flood-prone areas, there is a higher ratio of areas zoned for non-residential uses (commercial, industrial) than in areas that are zoned for potential future development. Specifically, within the 10-year storm recurrence floodplain, 30% of the land is zoned for industrial use. This is likely because several facilities, such as wastewater treatment plants and mills, require access to the river and were strategically developed to be within immediate proximity of waterfront access. The Lower Moodna zoning analysis demonstrated a general preference within watershed to limit residential use of flood-prone areas. 

Land Preservation

Preserving land allows for natural stormwater management, as well as limits the exposure of development, and minimizes sources of erosion within the watershed. Preserved land also maintains the hydrologic and ecologic function of the land by allowing rainwater to be absorbed or retained where it falls and thus minimizing run-off. If the land within the floodplain is preserved, it will never be developed, and therefore the risk — a calculation of rate exposure and the value of the potential damage — is eliminated.  Therefore, land preservation, both within the floodplains and in upland areas, is the best way to minimize flood damage.

Conserved riparian areas also generate a range of ecosystem services, in addition to the hazard mitigation benefits they provide. Protected forests, grasslands, and wetlands along rivers and streams can improve water quality, provide habitat to many species, and offer a wide range of recreational opportunities. Given the co-benefits that protected lands provide, there is growing interest in floodplain conservation as a flood damage reduction strategy.

Within the mapped Lower Moodna floodplains, our assessment determined that there appears to be a slight priority for preserving land most at-risk for flooding. This is likely a consequence of prioritizing land that is closest to riparian areas and preserving wetland areas, which are the most likely to experience flooding. Within the floodplains for the 10-year storm, approximately 22.7% is preserved. For the 100-year storm, approximately 21.2% of the land is preserved. Within the 500-year storm, this number drops slightly to 20.3%. These numbers are so close in part because the difference between the 10-year, 100-year, and 500-year floodplains are small in many areas of the watershed.

Hydrology and Hydraulics

Hydrology is the scientific study of the waters of the earth, with a particular focus on how rainfall and evaporation affect the flow of water in streams and storm drains. Hydraulics is the engineering analysis of the flow of water in channels, pipelines, and other hydraulic structures. Hydrology and hydraulics analyses are a key part of flood management.

As part of this flood assessment, Princeton Hydro created a series of hydrologic and hydraulic (H&H) models to assess the extent of potential flooding from the 10-year, 100-year, and 500-year storm recurrence intervals within the Lower Moodna. The modeling, which included flows for these storm events under existing conditions and future conditions based on predicted increases in precipitation and population growth, makes it easier to assess what new areas are most impacted in the future.

These are just a few of the assessments we conducted to analyze the ways in which flooding within the watershed may be affected by changes in land use, precipitation, and mitigation efforts. The flood models we developed informed our recommendations and proposed flood mitigation solutions for reducing and mitigating existing and anticipated flood risk.

Stay tuned for Part Two of this blog series in which we will explore flood risk-reduction strategies that include both traditional engineering and natural systems solutions. For more information about Princeton Hydro’s flood management services, go here: http://bit.ly/PHfloodplain.

 

New Green Infrastructure Toolkit for Municipalities

Our partner, New Jersey Future, just launched a brand new, interactive website toolkit to help municipalities across the state incorporate green infrastructure projects into their communities. The New Jersey Green Infrastructure Municipal Toolkit will provide expert information on planning, implementing, and sustaining green infrastructure to manage stormwaterThis toolkit acts as a one-stop resource for community leaders who want to sustainably manage stormwater, reduce localized flooding, and improve water quality.

According to the United States EPA, a significant amount of rivers, lakes, ponds, bays, and estuaries in New Jersey fall into the “Impaired Waters” category, meaning that one or more of their uses are not being met. This reality makes green infrastructure more important than ever in the effort to protect our waterways. When it rains, stormwater creates runoff, which often carries pollution to various types of waterbodies. Green stormwater infrastructure helps to absorb and filter rainwater, reducing the pollution entering our waterways and mitigating flooding in our communities. In urban areas, green infrastructure utilizes natural vegetation to divert stormwater, creating a cost-effective and aesthetically-pleasing way to manage water during rain events.

“We designed this toolkit to bring to light the benefits and importance of investing in green infrastructure at the local level,” said Dr. Stephen Souza, co-founder of Princeton Hydro. “Since the current NJ stormwater rules do not require green infrastructure, we hope to inspire municipal engineers and planning board members to believe in the value through our toolkit. Additionally, we hope it will serve as an educational resource to local officials and decision makers in the Garden State.”

For this project, Princeton Hydro was contracted by Clarke Caton Hintz, an architecture, design, and planning firm, leading this effort on behalf of the nonprofit organization New Jersey Future. Our expert engineers and scientists provided real-world examples integrating green infrastructure into development, in hopes of showing those using the toolkit real world evidence of how green infrastructure can be a part of the daily lexicon of stormwater management. Additionally, Dr. Stephen Souza developed performance standards that municipalities can integrate into stormwater management plans, which are available in the Green Infrastructure Municipal Toolkit.

Dam Removal Underway in Watertown, Connecticut

Deconstruction of the Heminway Pond Dam, Watertown, CT on July 16, 2018.

As dams age and decay, they can become public safety hazards, presenting a failure risk and flooding danger. According to American Rivers, “more than 90,000 dams in the country are no longer serving the purpose that they were built to provide decades or centuries ago.” Dam removal has increasingly become the best option for property owners who can no longer afford the rising cost of maintenance and repair work required to maintain these complex structures.

Dams can also cause environmental issues such as blocking the movement of fish and other aquatic species, inundating river habitat, impairing water quality, and altering the flow necessary to sustain river life. Removing nonfunctional, outdated dams can bring a river back to its natural state and significantly increase biodiversity for the surrounding watershed.

A view from the site of the Heminway Pond Dam removal on July 19, 2018.

Currently, work is underway in Watertown, Connecticut to remove the Heminway Pond Dam, which restricts fish passage in Steele Brook, creates a pond with increased water temperatures and high bacterial levels due to high geese populations, and encourages deposition of iron precipitate in the stream channel just downstream of the dam.

Princeton Hydro designed the engineering plans, managed permitting and is now overseeing construction for the removal project. The removal of the Heminway Pond Dam is identified as an integral component in addressing water quality impairment between the dam and Echo Lake Road.

CT DEEP recently published this piece encapsulating the Heminway Pond Dam removal project:

REMOVAL OF HEMINWAY POND DAM ON STEELE BROOK IN WATERTOWN UNDERWAY

Upstream at rock-filled breach in Heminway Pond Dam and shallow, dewatered impoundment on Steele Brook in Watertown (7-18-18)

After almost 15 years of discussion and planning with the Town of Watertown and other partners, removal of Heminway Pond Dam on Steele Brook in Watertown finally got underway in early July.  Though no longer functional, the dam and pond were originally constructed to supply water for a former thread/string mill.  The Town acquired the dam and pond from the Siemon Company, the most recent owner, in 2007 with an eye towards removing the dam, restoring the river and converting the dewatered impoundment area into a passive recreation area, including an extension of the Steele Brook Greenway.  With these goals in mind, the Town approached CT DEEP for help with removal of the dam.

As it turns out, CT DEEP, has also had a strong interest in seeing this dam removed.  It is anticipated that dam removal will improve the hydrology in this section of Steele Brook and eliminate a water quality impairment which manifests itself during hot weather and low flow conditions, as an orange-colored plume of water (due to iron precipitate) immediately downstream of the dam that impacts aquatic life.  Dam removal would also benefit fisheries by restoring stream connectivity and habitat.

Working towards these mutual goals, CT DEEP was able to provide federal CWA 319 nonpoint source grant funding to USDA NRCS to develop a watershed-based plan for Steele Brook to address nonpoint source impairments that includes a dam removal feasibility analysis for Heminway Pond Dam.  Based on the recommendations in this plan, CT DEEP subsequently provided additional 319 grant funds to the Town of Watertown to hire a consultant to develop a dam removal design package, and assist with permitting and preparation.

With the Town of Watertown as a strong and vested partner, CT DEEP is now helping this project over the finish line by providing a combination of 319 and SEP funds to accomplish the actual dam removal and restoration of Steele Brook.  Dayton Construction Company is performing the construction and Princeton Hydro is the consultant overseeing the project on behalf of the Town.  The Northwest Conservation District is also assisting with the project.  It is anticipated that the majority of the work will be completed by this Fall.  U.S. EPA, ACOE and CT DEEP have all played active roles with regard to permitting the project.

 

A view of the first notch during the Heminway Pond Dam removal on July 17, 2018.

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of dozens of small and large dams in the Northeast. Click here to read about a recent dam removal project the firm completed on the Moosup River. And, to learn more about our dam and barrier engineering services, visit: bit.ly/DamBarrier.

UPDATE: The Columbia Dam Is Coming Down

It’s happening! The Columbia Dam on the Paulins Kill in Northern New Jersey is finally coming down thanks to a successful collaboration between The Nature Conservancy, American Rivers, U.S. Fish and Wildlife Service, NJDEP Division of Fish and Wildlife Service, and Princeton Hydro. The first cut on the main dam wall was made just two weeks ago, and the water has started flowing downstream as the concrete is slowly being removed by the contractors RiverLogic Solutions and SumCo Eco-Contracting.

“In New Jersey, successful dam removal projects are often the result of partnerships between nonprofit organizations, federal and state agencies, consultants, and others working together toward the common goal of river restoration,” exclaimed Dr. Laura Craig, Director of River Restoration, American Rivers. “The first day of dam demolition is always a joyous occasion for project partners, but I was especially happy to see the river flowing through the breached Columbia Dam for the first time after working so intensely on this project for the last few years.”

Princeton Hydro has been involved with the engineering and restoration design from the beginning, so we’re very excited to report on this major update.  Our team of engineers and ecologists studied the feasibility of removal as requested by American Rivers in partnership with the New Jersey chapter of The Nature Conservancy.  We investigated, designed, and prepared the necessary permits for the removal of this dam. And, now we’ve been subsequently been hired to provide construction administration services during the removal process, which means we get to see the dam come down firsthand, piece by piece!

“It is truly amazing and exciting to finally see the main and remnant dams come down, as I have been involved in this restoration effort since the feasibility stage,” said Kelly Klein, Senior Project Manager, Princeton Hydro. “I am so honored to be part of this dynamic team and to collaborate with our project partners during every stage of this dam removal.”

Geoff Goll, Princeton Hydro and Beth Styler Barry, The Nature Conservancy on site August 3, 2018. Photo credit: Laura Craig, American Rivers

“On Friday, August 3rd 2018, we began demolition of the 300 foot-long, 18 foot-high Columbia Dam. The Paulins Kill will run freely to meet the Delaware River for the first time in 109 years,” said New Jersey Nature Conservancy’s Beth Styler Barry. “The benefits of reconnecting these two freshwater ecosystems will be immediate and impact creatures that live in and near the stream, as well as people who come out to paddle, fish or enjoy the wildlife. Dam Removal projects are exciting, ecologically important and also a challenge, this project is a good example of partners coming together to get a great restoration project done.”

Because this is a big deal, we want to keep *YOU* updated on what’s happening from the field. Moving forward, we’ll post weekly blogs with scenes from the site.  Here’s a snapshot of what’s been happening over the last last two weeks:

August 1, 2018. Photo credit: Casey Schrading, Princeton Hydro

In order to make the first saw cut into the dam, Princeton Hydro and RiverLogic Solutions first identified the locations of the drill holes. These drill holes are used to feed the diamond wire through the dam for saw cutting.

August 1, 2018. Photo credit: Casey Schrading, Princeton Hydro

The crew placed the saw cutter machine on the staging area on top of the apron and prepared for the cut.

August 3, 2018. Photo credit: Princeton Hydro

In order to create a notch in the dam, the crew supplemented the saw cutting with hammering.

August 3, 2018. Photo Credit: The Nature Conservancy, Columbia Dam Volunteer Drone Team

August 3, 2018. Photo credit: Erik Sildorff, Delaware Riverkeeper Network

August 7, 2018. Photo credit: Casey Schrading, Princeton Hydro

Since the high water level was now higher than the bottom of the breach, water is able to flow in and over the notched section.

August 14, 2018. Photo credit: RiverLogic Solutions

Because of high flows of water from recent storm events, the dam breach is being widened to allow for larger flows of water to move downstream during high flow events. 

Additionally, a few weeks ago we reported on the lowering of the water levels and removal of the remnant dam downstream (below).

PHOTOS: Columbia Dam Removal

Since then, the remnant dam has been completed removed and the area has been stabilized.

July 23, 2018. Photo credit: Casey Schrading, Princeton Hydro

Now, the water can freely flow through this section of the Paulins Kill.

And, in case you missed it, we celebrated the commencement of the Columbia Dam removal with NJDEP’s Commissioner Catherine McCabe and our project partners. Full story below:

Celebrating the Columbia Dam Removal

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast. To learn more about our fish passage and dam removal engineering services, visitbit.ly/DamBarrier.

Conservation Spotlight: Dunes at Shoal Harbor Shoreline Protection

Hurricane Sandy was the largest storm to ever originate in the Atlantic ocean. It badly damaged several countries in the Caribbean, caused over $50 billion in damages along the Eastern Seaboard, and left dozens dead. While hurricanes are a natural part of our climate system, research shows that intense hurricane activity has been on the rise in the North Atlantic since the 1970s. This trend is likely to be exacerbated by sea level rise and growing populations along coastlines. Natural coastal habitats — like wetlands and dunes — have proven to shield people from storms and sea-level rise, and have protected coastal communities from hundreds of millions of dollars in damage.

The Dunes at Shoal Harbor, a residential community in Monmouth County, New Jersey, is situated adjacent to both the Raritan Bay and the New York City Ferry channel. The site, previously utilized for industrial purposes, consisted of a partially demolished docking/berthing facility. A significantly undersized 6” diameter, 8-foot long stone revetment was also constructed on the property.

During Hurricane Sandy, the revetment failed and the community was subjected to direct wave attack and flooding. Homes were damaged, beach access was impaired, and the existing site-wide stormwater management basin and outfall was completely destroyed.

Princeton Hydro performed a wave attack analysis commensurate with a category three hurricane event, and used that data to complete a site design for shoreline protection. Consistent with the analysis, the site design includes the installation of a 15-foot rock revetment (one foot above the 100-year floodplain elevation) constructed with four-foot diameter boulders. The project also consists of replacing a failed elevated timber walkway with a concrete slab-on-grade walkway, restoring portions of the existing bulkhead, clearing invasive plants, and the complete restoration of the failed stormwater basin and outlet.

A rendering of the “Dunes at Shoal Harbor” shoreline protection design by Princeton Hydro.

The plan incorporates natural barriers to reduce the impacts of storm surges and protect the coastal community, including planting stabilizing coastal vegetation to prevent erosion and installing fencing along the dune to facilitate natural dune growth.

These measures will discourage future erosion of the shoreline, protect the residential community from future wave attacks and flooding, and create a stable habitat for native and migratory species.  The project is currently in the permitting phase, and will move to construction when all permits are obtained from local, state, and federal agencies.

This project is an great example of Princeton Hydro’s ability to coordinate multi-disciplinary projects in-house. Our Water Resources Engineering, Geosciences Engineering, and Natural Resources teams have collaborated efficiently to analyze, design, and permit this shoreline protection project. For more information on our engineering services, go here.

PHOTOS: Columbia Dam Removal

VIDEO: “Columbia Lake Dam when the water level was 18 inches to 2 feet lower”
Video courtesy of Matt Hencheck

In Northwest New Jersey on the Paulins Kill, an important tributary to the Delaware River, the century-old hydroelectric Columbia Dam is actively being removed. Princeton Hydro was contracted by American Rivers to investigate, design, and apply for permits for the removal of this dam for the New Jersey chapter of The Nature Conservancy. Our team of engineers and ecologists studied the feasibility of removal by collecting sediment samples, performing bioassay tests, and conducting a hydraulic analysis of upstream and downstream conditions. We’re excited to report that the Columbia Dam removal has officially commenced!

The New Jersey Department of Environmental Protection started draining water from Columbia Lake a few weeks ago, which was the first step in removing the dam. Princeton Hydro has subsequently been contracted by The Nature Conservancy to provide construction administration services.  Photos below show the water at lowered levels at the impoundments.

“Dewatering Impoundment” Photo by Princeton Hydro

“An aerial drone snapshot when water levels were down about 5 feet at the upper impoundment” Photo courtesy of the New Jersey Chapter of The Nature Conservancy

Last week, the first hammer hit the wall of a downstream dam remnant, officially starting the removal process.

“The first hammer”  Photo courtesy of Dale Bentz, RiverLogic Solutions

The dam removal process will last a few weeks, as the contractor actively knocks down the thick concrete wall.

“Pressure and time”  Photo courtesy of Dale Bentz, RiverLogic Solutions

“Halfway there”  Photo courtesy of Dale Bentz, RiverLogic Solutions

Once the dam is removed, there is a high probability that populations of American Shad and River Herring will be restored. It may also enhance American Eel migration. As a coldwater fishery, this reach also has significant potential for trout species, as well as Smallmouth Bass.

(Top) Before: Photo of the Columbia Dam before construction. (Bottom) After: Princeton Hydro’s rendering of what the river will look like once the dam is removed.

“It is very exciting to be a part of such a monumental effort for the restoration of the Paulins Kill. This river, once a major migration route for diadromous fish like American Shad, will once again be a nursery for this Delaware River icon,” said Geoffrey Goll, PE, President and co-founder of Princeton Hydro. “The removal of these dams will also restore the functions and values of a riparian corridor and floodplain, eliminate costs to the taxpayer for the maintenance of a dam and lake, and provide additional riverine recreational opportunities. I expect to see the same resilience and positive impact to the Delaware River as the recent barrier removals on another major NJ tributary, the Musconetcong River. It is a win-win for NJ, and with The Nature Conservancy at the helm and expert guidance from American Rivers, it has been an experience of a career.”

This project could not have been possible without the hard work and dedication of the following partner organizations: The Nature Conservancy of New Jersey, American Rivers, U.S. Fish and Wildlife Service, RiverLogic Solutions, NJDEP Division of Fish and Wildlife Service, and SumCo EcoContracting.

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast. To learn more about our fish passage and dam removal engineering services, visitbit.ly/DamBarrier.


This video from 2016 features the Nature Conservancy’s New Jersey State Director Barbara Brummer, Ph.D. speaking on the Columbia Dam removal. Video credit: NJ Herald.