Recycled Christmas Trees Used to Restore Disappearing NJ Shoreline

INNOVATIVE COASTAL RESILIENCY DESIGN USING RECYCLED CHRISTMAS TREES IMPLEMENTED BY VOLUNTEERS ALONG DISAPPEARING POINT PLEASANT SHORELINE

To prevent further erosion at the Slade Dale Sanctuary in Point Pleasant, dozens of volunteers helped stabilize the shoreline using a technique that has never been done before in New Jersey.  On Saturday, American Littoral Society, in partnership with Princeton Hydro, Borough of Point Pleasant, New Jersey Nature Conservancy, New Jersey Corporate Wetlands Restoration Partnership, and the Point Pleasant Rotary Club, organized dozens of volunteers to restore the shoreline and prevent further erosion at the Slade Dale Sanctuary using recycled Christmas trees.

As one of only a few areas of open space left in Point Pleasant, the 13-acre Slade Dale Sanctuary is an important part of the local ecosystem, and is home to a number of unique animals and plants. This waterfront preserve along the North Branch Beaver Dam Creek is predominantly tidal marsh, which provides habitat for various birds, including osprey, as well as passive recreation opportunities for the community.

Unfortunately, the Slade Dale Sanctuary is disappearing. Since 1930, the shoreline of Slade Dale Sanctuary has retreated approximately 300 feet, equal to the length of a football field, and the channels into the marsh have increased in number and size, according to a study we conducted on behalf of American Littoral Society, for which we provide engineering and natural resources management consulting services.

In order to stabilize the shoreline, restore the marsh, and enhance the ecological function and integrity of the preserve, Princeton Hydro developed a conceptual and engineering design using living shoreline features to enhance ecological value and reduce erosion. The final conceptual plan for restoration uses tree vane structures to attenuate wave action, foster sediment accretion, and reduce erosion along the coast.

To implement this vision and begin building back marsh, the project team is constructing several Christmas tree breakwaters and Christmas tree vanes that mimic naturally occurring debris structures in tidal systems and enhance habitat opportunity and shelter for aquatic life. Volunteers came together on Saturday, May 11 to help with the construction. The Mayor of Point Pleasant Robert A. Sabosik also attended the event, “The Barnegat Bay is an attribute that we all enjoy, and it’s something we have to protect.”

After the 2018 holiday season, the Good Sheppard Lutheran Church in Point Pleasant provided space to collect and store donated Christmas trees, which were then moved to the marsh a few days before the event. On the day of the event, recycled Christmas trees were transported from their staged locations on the marsh to the breakwater sections that were previously installed in the water. To transport them across the water to the pilings, volunteers used two methods: by walking a skiff boat loaded with trees through the water to the pilings or by forming assembly line from the shore to pilings to guide floating trees through the water (check out the album below!).  Then, they stuffed the Christmas trees between the pilings, securely tied them down, and staked Christmas trees directly into the creek bottom. For extra assurance, the placed and tied heavy bags of used oyster shells on top of the tree line. Oyster shells were donated by local Monmouth County restaurants in an effort to reduce waste streams.

“We really enjoyed participating in this event with American Littoral Society and so many wonderful volunteers,” Christiana L. Pollack, GISP, CFM, Princeton Hydro’s Project Manager for this restoration effort. “It is so wonderful to see this project coming to fruition. We’re so proud of our partnership with American Littoral Society and our combined efforts to revitalize and rehabilitate our precious coastal habitats.”

Members of the media were invited to attend the volunteer event. News 12 New Jersey covered the event and aired a story on it during their Sunday news broadcast, and NJTV News will be airing the story in the near future.

Many thanks to everyone who came out in support of this important restoration effort at Slade Dale Sanctuary American Littoral Society hosts volunteer events throughout the year. Go here to get involved.

 

Capture the Change at Roebling Park

By Kelsey Mattison, Marketing Coordinator

Our wetland restoration project at Roebling Park just got even cooler! The Mercer County Park Commission (MCPC) is launching a citizen science/outreach campaign to help them document the visual changes seen in the park as the restoration progresses.

MCPC invites visitors to the park to help capture the change from various vantage points within the park. There are seven photo stations spread throughout the park’s trail. All are clearly marked with signage and directions on how to participate in the Capture the Change initiative.

Because the restoration heavily involves the removal of invasive Phragmites australis, most of the vantage points currently overlook dense swaths of “phrag” overgrowth in the marsh. Once the restoration is complete, that overgrowth will give way to native flora, increased biodiversity, enhanced tidal function, more incredible viewscapes, and so much more.

Here are some photos we captured at MCPC’s guided hike through the marshland, introducing the Capture the Change initiative. These photos were taken at each Capture the Change vantage point along the trail.

First Capture the Change vantage point

Second Capture the Change vantage point

Third Capture the Change vantage point

Fourth Capture the Change vantage point

Fifth Capture the Change vantage point

Sixth Capture the Change vantage point

Seventh Capture the Change vantage point

You can join the Capture the Change initiative too by posting a photo from one of these vantage points and adding the hashtag #BagthePhrag. We can’t wait to watch this marshland transform!

For more details on this restoration project, check out this blog:

Restoring the Northernmost Freshwater Tidal Marsh on the Delaware River

Kelsey Mattison is Princeton Hydro’s Marketing Coordinator and a recent graduate of St. Lawrence University with a degree in English and environmental studies and a passion for environmental communication. Through her extracurricular work with various nonprofit organizations, she has developed expertise in social media management, content writing, storytelling, and interdisciplinary thinking. In her free time, Kelsey enjoys dancing of all sorts, going on long walks with her camera, and spending time with friends and family in nature.

American Shad Discovered Just Miles Upstream of Former Columbia Dam

Struggling fish species returns to spawning grounds for the first time in over a century, just months after dam removal completed

For the first time in over a century, American Shad (Alosa sapidissima) have been discovered upstream from the former Columbia Dam site on the 42-mile long Paulins Kill river, an important tributary to the Delaware River in northwestern New Jersey. Princeton Hydro’s Senior Water Resources Engineer and avid fisherman, Dr. Clay Emerson, PE, CFM, caught an American Shad in the Paulins Kill miles above the previous dam site this past weekend.

A successful collaboration between The Nature Conservancy, American Rivers, Princeton Hydro, U.S. Fish and Wildlife Service, and NJDEP Division of Fish and Wildlife Service, resulted in the removal of the out-of-commission hydroelectric Columbia Dam just months ago. Prior to this removal, American Shad and other migratory fish could not make it past the large dam structure to swim upstream to their important breeding grounds.

“I was thrilled to feel the familiar hit and see the flash of an American Shad as I reeled the fish to shore. Being an avid shad fisherman and enthusiast, I knew the significance of seeing this beautiful fish back in a place where it’s always belonged,” said Clay. “We are thrilled to witness the American Shad return upstream so quickly after the century-old Columbia dam was removed. It’s a testament to the nearly instant benefits that dam removal has on the riverine ecosystem.”

The American shad’s return is an excellent sign of the overall ecological health and diversity of the river. Historically, dams, overfishing, and pollution have caused population decline in many of the major eastern U.S. rivers. American Shad, deemed the “Mid-Atlantic salmon,” are anadromous, which means they spend much of their lives in the ocean but return to rivers and their tributaries to spawn. This long distance swimmer makes it one of the Earth’s great travelers. After spawning upstream in rivers of the East Coast, American Shad migrate to their primary habitat in the Atlantic Ocean up in the Gulf of Maine. Unlike the salmon of the Pacific Ocean, American Shad may return to their spawning grounds multiple times over their lifetime. The species is a key prey species for many large fish and cetaceans like dolphins and whales in the Atlantic Ocean.

“The best indicator of river water quality improving in the Paulins Kill is the appearance of shad miles upstream from the Columbia Dam,” said Dr. Barbara Brummer, New Jersey State Director of The Nature Conservancy. “Today, we celebrate proof that with the 100-year dam impediment removed, they are once again successfully swimming up the river. I could not be happier! This is what teamwork and passion for nature can achieve. It is a great day for conservation in New Jersey, with many more great days for shad in the Paulins Kill to come.”

Princeton Hydro was contracted to investigate, design, and apply for permits for the removal of this dam as requested by American Rivers in partnership with the New Jersey chapter of The Nature Conservancy. The firm investigated, designed, and prepared the necessary permits for the dam removal. The team of engineers and ecologists studied the feasibility of removal by collecting sediment samples, performing bioassay tests, and conducting a hydraulic analysis of upstream and downstream conditions.

A view of the Columbia Dam at the beginning of the removal process.

“We are proud to be a part of this collaborative project, which has had an immediate and positive impact to the ecosystem of the Delaware River Watershed and its fishery resources,” said Princeton Hydro’s President Geoffrey Goll, PE. “Re-discovering this Delaware River diadromous icon upstream of the former dam is a very promising sign that the river will once again return to a major migration route and nursery for American Shad. This is why we do what we do!”

A view of the former Columbia Dam towards the end of the dam removal process.

This Columbia Dam Removal project could not have been possible without the hard work and dedication of the following partner organizations: The Nature Conservancy of New Jersey, American Rivers, Princeton Hydro, U.S. Fish and Wildlife Service, RiverLogic Solutions, NJDEP Division of Fish and Wildlife Service, and SumCo EcoContracting.

Anglers are reminded, according to New Jersey fishing regulations, except for the Delaware River mainstem it is illegal to fish for shad in any fresh waters of New Jersey.

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast. To learn more about our fish passage and dam removal engineering services, visitbit.ly/DamBarrier.

Study Data Leads to Healthier Wreck Pond Ecosystem

Wreck Pond is a tidal pond located on the coast of the Atlantic Ocean in southern Monmouth County, New Jersey. The 73-acre pond, which was originally connected to the sea by a small and shifting inlet, got its name in the 1800s due to the numerous shipwrecks that occurred at the mouth of the inlet. The Sea Girt Lighthouse was built to prevent such accidents. In the 1930s, the inlet was filled in and an outfall pipe was installed, thus creating Wreck Pond. The outfall pipe allowed limited tidal exchange between Wreck Pond and the Atlantic Ocean.

In the 1960s, Wreck Pond flourished with wildlife and was a popular destination for recreational activities with tourists coming to the area mainly from New York City and western New Jersey. In the early spring, hundreds of river herring would migrate into Wreck Pond, travelling up its tributaries — Wreck Pond Brook, Hurleys Pond Brook and Hannabrand Brook — to spawn. During the summer, the pond was bustling with recreational activities like swimming, fishing, and sailing.

Over time, however, the combination of restricted tidal flow and pollution, attributable to increased development of the watershed, led to a number of environmental issues within the watershed, including impaired water quality, reduced fish populations, and flooding.

Throughout the Wreck Pond watershed, high stream velocities during flood conditions have caused the destabilization and erosion of stream banks, which has resulted in the loss of riparian vegetation and filling of wetlands. Discharge from Wreck Pond during heavy rains conveys nonpoint source pollutants that negatively impact nearby Spring Lake and Sea Girt beaches resulting in beach closings due to elevated bacteria counts. Watershed erosion and sediment transported with stormwater runoff has also contributed to excessive amounts of sedimentation and accumulations of settled sediment, not only within Wreck Pond, but at the outfall pipe as well. This sediment further impeded tidal flushing and the passage of anadromous fish into and out of Wreck Pond.

In 2012, Hurricane Sandy caused wide-spread destruction throughout New Jersey and the entire eastern seaboard. The storm event also caused a major breach of the Wreck Pond watershed’s dune beach system and failure of the outfall pipe. The breach formed a natural inlet next to the outfall pipe, recreating the connection to the Atlantic Ocean that once existed. This was the first time the inlet had been open since the 1930s, and the reopening cast a new light on the benefits of additional flow between the pond and the ocean.

Hurricane Sandy sparked a renewed interest in reducing flooding impacts throughout the watershed, including efforts to restore the water quality and ecology of Wreck Pond. The breach caused by Hurricane Sandy was not stable, and the inlet began to rapidly close due to the deposition of beach sand and the discharge of sediment from Wreck Pond and its watershed.

Princeton Hydro and HDR generated the data used to support the goals of the feasibility study through a USACE-approved model of Wreck Pond that examined the dynamics of Wreck Pond along with the water bodies directly upland, the watershed, and the offshore waters in the immediate vicinity of the ocean outfall. The model was calibrated and verified using available “normalized” tide data. Neighboring Deal Lake, which is also tidally connected to the ocean by a similar outfall pipe, was used as the “reference” waterbody. The Wreck Pond System model evaluated the hydraulic characteristics of Wreck Pond with and without the modified outfall pipe, computed pollutant inputs from the surrounding watershed, and predicted Wreck Pond’s water quality and ecological response. The calibrated model was also used to investigate the effects and longevity of dredging and other waterway feature modifications.

As part of the study, Princeton Hydro and HDR completed hazardous, toxic, and radioactive waste (HTRW) and geotechnical investigations of Wreck Pond’s sediment to assess potential flood damage reduction and ecological restoration efforts of the waterbody. The investigation included the progression of 10 sediment borings conducted within the main body of Wreck Pond, as well as primary tributaries to the pond. The borings, conducted under the supervision of our geotechnical staff, were progressed through the surgical accumulated sediment, not the underlying parent material. Samples were collected for analysis by Princeton Hydro’s AMRL-accredited (AASHTO Materials Reference Library) and USACE-certified laboratory. In accordance with NJDEP requirements, sediment samples were also forwarded to a subcontracted analytical laboratory for analysis of potential nonpoint source pollutants.

In the geotechnical laboratory, the samples were subjected to geotechnical indexing tests, including grain size, organic content, moisture content, and plasticity/liquid limits. For soil strength parameters, the in-field Standard Penetration Test (SPT), as well as laboratory unconfined compression tests, were performed on a clay sample to provide parameters for slope stability modeling.

The culvert construction and sediment dredging were completed at the end of 2016. Continued restoration efforts, informed and directed by the data developed through Princeton Hydro’s feasibility study, are helping to reduce the risk of flooding to surrounding Wreck Pond communities, increase connectivity between the pond and ocean, and improve water quality. The overall result is a healthier, more diverse, and more resilient Wreck Pond ecosystem.

During the time of the progression of study by the USACE, the American Littoral Society and the towns of Spring Lake and Sea Girt were also progressing their own restoration effort and completed the implementation of an additional culvert to the Atlantic Ocean.  The American Littoral Society was able to utilize the data, analysis, and modeling results developed by the USACE to ensure the additional culvert would increase tidal flushing and look to future restoration projects within Wreck Pond.

American Littoral Society

 

To learn more about our geotechnical engineering services, click here.

Urban Wetland Restoration to Yield Flood Protection for Bloomfield Residents

As part of the Third River Floodplain Wetland Enhancement Project,
a disturbed, flood-prone industrial site will be converted into a thriving public park.

Along the Third River and Spring Brook, two freshwater tributaries of the Passaic River, a disturbed industrial site is being transformed into 4.2 acres of wetlands, restoring the natural floodplain connection, enhancing aquatic habitat, and increasing flood storage capacity for urban stormwater runoff. The groundbreaking ceremony for this important ecological restoration project for Bloomfield Township took place last month.

“The Third River Floodplain Wetland Enhancement Project is a unique, creative solution that will transform a highly-disturbed, flood-prone, former industrial site into a thriving public park allowing for both passive and active recreational activities,” said Mark Gallagher, Vice President of Princeton Hydro. “By removing a little over four acres of upland historic fill in this densely developed area and converting it to a functioning floodplain wetland, the project will restore valuable ecological functions, increase flood storage capacity, and enhance wildlife habitat.”

Princeton Hydro is serving as the ecological engineer to Bloomfield Township for the Third River Floodplain Wetland Enhancement Project. Princeton Hydro’s scientists and engineers have assisted in obtaining grants, collected background ecological data through field sampling and surveying, created a water budget, completed all necessary permitting, and designed both the conceptual and final restoration plans. Additionally, Princeton Hydro will be conducting construction oversight during the implementation of this important urban wetland creation project.

The site includes 1,360 feet along the east bank of the Third River and 3,040 feet along the banks of the Spring Brook. These waterways are freshwater tributaries of the Passaic River and share a history of flooding above the site’s 100-year flood plain. The Third River, like many urban streams, tends to be the victim of excessive volume and is subjected to erosion and chronic, uncontrolled flooding. This green infrastructure project will re-establish the natural floodplain wetland and riparian plant communities, which will lead to a species-rich forest community through the removal of invasive species, setting the stage for native plants.

“Over 500 trees and shrubs will be planted in the new wetland with additional trees and shrubs being planted along Lion Gate Drive and in existing woodlands. The selected native plant species all provide important wildlife value such as providing fruit for migratory birds,” Gallagher explained. “We are excited to work with Bloomfield Township to design an urban restoration project that will both enhance the site’s ecological and flood storage value and provide accessibility to the community of Bloomfield.”

It is estimated that Phase One of the project, which includes the wetland construction and plantings, will be completed by September 1, 2019. The maintenance building, concession stand, ball field, etc., will be constructed as part of Phase Two.

“We are very excited to break ground on this exciting project that will have tremendous public benefits, like providing much-needed open space and lowering flood insurance rates for nearby residents and businesses,” said Bloomfield Township Mayor Michael Venezia. “By taking an underutilized parcel of land and turning it into beautiful park and waterfront space to be enjoyed by the public, we are fulfilling our commitment to preserving and enhancing open space. We would not have accomplished this without the efforts of Councilman Nick Joanow, who has advocated for this park for many years, Township Administrator Matthew Watkins, our excellent contractors and environmental experts, and I would like to thank them all. I also want to thank the Department of Environmental Protection and Freshwater Wetlands Mitigation Council for their important grant assistance to help us jump start this complex which will enrich the lives of Bloomfield residents for decades to come.”

NY/NJ Baykeeper has been vital in bringing the project to fruition, having served as an advocate for the project for the last 17 years.

“Lion’s Gate natural restoration is a legitimate all-in-one project that uses green infrastructure and smart planning to address the nested set of urban land use challenges, including: stormwater management, flooding, brownfield cleanup, natural habitat restoration, and the need for both more active playing fields and more passive greenfields,” said Greg Remaud, Baykeeper and CEO, NY/NJ Baykeeper.

Together, Bloomfield Township, Strauss and Associates, ARH, and Princeton Hydro secured $1.76 million in funding for this project from the New Jersey Freshwater Wetlands Mitigation Council and another several million dollars from NJDEP’s Office of Natural Resource Restoration.

To read more about our wetland restoration work, go here: http://bit.ly/PHwetland

 

Wetland Restoration Project Wins “Land Ethics” Award of Merit

The Pin Oak Forest Conservation Area, located in a heavily developed area of northern Middlesex County, New Jersey, once suffered from wetland and stream channel degradation, habitat fragmentation, decreased biodiversity due to invasive species, and ecological impairment. The site was viewed as one of only a few large-scale freshwater wetland restoration opportunities remaining in this region of New Jersey. Thus, a dynamic partnership between government agencies, NGOs, and private industry, was formed to steward the property back to life and restore its natural function. Today, at Bowman’s Hill Wildflower Preserve’s 19th Annual Land Ethics Symposium, Middlesex County and the project team were presented with the “Land Ethics Award of Merit” for its remarkable restoration achievements.

“In just a few years, the landscape at Pin Oak has transformed from a degraded, disconnected wetland to a healthy, high-functioning landscape,” said Mark Gallagher, Vice President of Princeton Hydro. “This restoration project exemplifies how a diverse group of public and private entities can work together to identify opportunities, overcome challenges and achieve tremendous success.”

The Pin Oak restoration team includes Middlesex County Office of Parks and Recreation, Woodbridge Township, Woodbridge River Watch, New Jersey Freshwater Wetlands Mitigation Council, GreenTrust Alliance, GreenVest, and Princeton Hydro.

The Pin Oak Forest Conservation Area is a 97-acre tract of open space that contains a large wetland complex at the headwaters of Woodbridge Creek. In 2017, the award-winning restoration project converted over 30 acres of degraded freshwater wetlands, streams and disturbed uplands dominated by invasive species into a species-rich and highly functional headwater wetland complex. The resulting ecosystem provides valuable habitat for wildlife and a nurturing environment for native plants such as pin oak, swamp white oak, marsh hibiscus, and swamp rose. The restored headwater wetland system provides stormwater management, floodplain storage, enhanced groundwater recharge onsite, and surface water flows to Woodbridge Creek, as well as public hiking trails, all benefiting the town of Woodbridge.

The Land Ethics Award recognizes the creative use of native plants in the landscape, sustainable and regenerative design, and ethical land management and construction practices. The recipient is selected by a jury of professionals in the field of design, preservation and conservation, and the award is presented at the Annual Symposium.

Photo courtesy of Barbara Storms, Bowman’s Hill Wildflower Preserve.

In addition to the Award of Merit, Bowman’s Hill Wildflower Preserve’s honored Dr. Marion Kyde with the 2019 Land Ethics Director’s Award and Doylestown Township Environmental Advisory Council with the 2019 Land Ethics Award. Congratulations to all of the winners!

Established in 1934, Bowman’s Hill Wildflower Preserve is a 134-acre nature preserve, botanical garden, and accredited museum working to inspire the appreciation and use of native plants by serving as a sanctuary and educational resource for conservation and stewardship. For more information, visit www.bhwp.org.

Read more about the Pin Oak Forest Restoration project:

Innovative and Effective Approach to Wetland Restoration

To learn more about Princeton Hydro’s wetland restoration services and recent projects, visit us here: http://bit.ly/PHwetland

 

Fish Passage Restored on the Paulins Kill

A view of where the Columbia Lake Dam used to reside. February 19, 2019. Photo courtesy of Casey Schrading, Staff Engineer, Princeton Hydro

On the Paulins Kill, the 100-year old Columbia Lake Dam has almost been completely removed, and fish passage has been restored!  Since the first cut was executed on the main dam in August, many exciting advances have been made towards restoring the Paulins Kill back to its natural state. Check out the video below, courtesy of the New Jersey Nature Conservancy Volunteer Drone Team. 

Piece by piece, the dam was notched out throughout the fall season and is now completely removed with the exception of the dam apron, the horizontal concrete structure that sits downstream of the dam, and the section of the dam that sits below the riverbed. The part of the dam in the riverbed is now being removed all the way down  to three feet under the ground. The full removal is estimated to be complete by mid-March. In mid-August, the first cut was widened to 80 feet, allowing for better management of high flows during storm events, which had been posing a challenge immediately following the first cut.

In late August, the installation of rock vanes at the Brugler Road Bridge began. Rock vanes are engineered, in-stream structures that help to stabilize a channel while enhancing aquatic habitat and movement.

A generic schematic example of cross vanes, this is not the exact engineering plan for this specific project. Photo courtesy of North Carolina Cooperative Extension.

The rock vanes installed at the Brugler Road Bridge site are cross vanes. Cross vanes consist of a set of boulders angled upstream on a river, with another section of smaller rocks placed upstream. The taller sections of the cross vanes deflect the streamflow away from the banks, decreasing scouring effects. Instead, the flow travels over the rock walls and concentrates down the center of the channel, creating a deep and elongated pool in the middle of the stream.  

Velocities between the notches in the rock vanes were evaluated using a velocity meter in accordance with the design specifications originally proposed. Based on the U.S. Fish and Wildlife Service fish passage design criteria, velocities in the notches could not be greater than 8.25 feet per second. All of the velocity measurements in this rock vane were below the maximum thresholds, ensuring no blockage of fish passage is made through the vanes.

Since the removal of the dam began, vegetative growth from the natural seedbed of the upper impoundment has been observed (see photo below).

In October, scour protection installation commenced at the Warrington Road Bridge site. After the team conducted geotechnical test pits, they discovered that a concrete scour wall that slopes out to the Paulins Kill was present and deep enough to be able to install rock at the necessary depth. They also found that the existing gabions, caged baskets filled with rock or concrete often used to protect against erosion, were intact and could be left in place. The team installed four (4) feet of riprap under and around the bridge in the riverbed and tied it into the existing grade of the banks.

The original notch in the dam was lowered one foot per day starting in mid-December, reducing water surface elevations down to the apron elevation during the month of January.

To accommodate NJ Fish and Wildlife’s request for animal passage under the I-80 bridges, an area of the previously installed riprap on the northwest abutment wall was flattened out and filled in with river cobble. This path will promote wildlife movement under the bridge as opposed to through the existing tunnel.

Currently, rock vanes are being installed under the I-80 bridges specifically to enhance fish passage. These structures vary slightly from the rock vanes at the Brugler Road Bridge site, as they are designed to slow river flow, helping migrating fish travel upstream and traverse a 5-foot elevation difference in the streambed, much like a fish ladder

These rock vanes are more than halfway completed and are on track to be finished in time for fish populations to make full use of them.  The next steps are to finish the demolition of the dam and the construction of the fish passage rock vanes under the I-80 bridges, plant vegetation throughout the upper impoundment, create a recreational trail through the upper impoundment, and plan for fishing and boating access! Stay tuned for more exciting developments on this incredible project.

Thank you to our project partners: The Nature Conservancy, American Rivers, U.S. Fish and Wildlife Service, and NJDEP Division of Fish and Wildlife Service.

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast. To learn more about our fish passage and dam removal engineering services, visitbit.ly/DamBarrier.

Part Two: Reducing Flood Risk in Moodna Creek Watershed

Photo of Moodna Creek taken from the Forge Hill Road bridge, New Windsor Post Hurricane Irene (Courtesy of Daniel Case via Wikimedia Commons)

This two-part blog series showcases our work in the Moodna Creek Watershed in order to explore common methodologies used to estimate flood risk, develop a flood management strategy, and reduce flooding.

Welcome to Part Two: Flood Risk Reduction and Stormwater Management in the Moodna Creek Watershed

As we laid out in Part One of this blog series, the Moodna Creek Watershed, which covers 180 square miles of eastern Orange County, New York, has seen population growth in recent years and has experienced significant flooding from extreme weather events like Hurricane Irene, Tropical Storm Lee, and Hurricane Sandy. Reports indicate that the Moodna Creek Watershed’s flood risk will likely increase as time passes.

Understanding the existing and anticipated conditions for flooding within a watershed is a critical step to reducing risk. Our analysis revealed that flood risk in the Lower Moodna is predominantly driven by high-velocity flows that cause erosion, scouring, and damage to in-stream structures. The second cause of risk is back-flooding due to naturally formed and man-made constrictions within the channel. Other factors that have influenced flood risk within the watershed, include development within the floodplain and poor stormwater management.

Now, let’s take a closer look at a few of the strategies that we recommended for the Lower Moodna Watershed to address these issues and reduce current and future flood risk:

Stormwater Management

Damage to Butternut Drive caused when Moodna Creek flooded after Hurricane Irene (Courtesy of Daniel Case via Wikimedia Commons)

Stormwater is the runoff or excess water caused by precipitation such as rainwater or snowmelt. In urban areas, it flows over sewer gates which often drain into a lake or river. In natural landscapes, plants absorb and utilize stormwater, with the excess draining into local waterways.  In developed areas, like the Moodna Creek watershed, challenges arise from high volumes of uncontrolled stormwater runoff. The result is more water in streams and rivers in a shorter amount of time, producing higher peak flows and contributing to flooding issues.

Pollutant loading is also a major issue with uncontrolled stormwater runoff. Population growth and development are major contributors to the amount of pollutants in runoff as well as the volume and rate of runoff. Together, they can cause changes in hydrology and water quality that result in habitat loss, increased flooding, decreased aquatic biological diversity, and increased sedimentation and erosion.

To reduce flood hazards within the watershed, stormwater management is a primary focus and critical first step of the Moodna Creek Watershed Management Plan. The recommended stormwater improvement strategies include:

  • Minimizing the amount of impervious area within the watershed for new development, and replacing existing impervious surfaces with planter boxes, rain gardens and porous pavement.
  • Utilizing low-impact design measures like bioretention basins and constructed-wetland systems that mimic the role of natural wetlands by temporarily detaining and filtering stormwater.
  • Ensuring the long-term protection and viability of the watershed’s natural wetlands.

The project team recommended that stormwater management be required for all projects and that building regulations ensure development does not change the quantity, quality, or timing of run-off from any parcel within the watershed. Recommendations also stressed the importance of stormwater management ordinances focusing on future flood risk as well as addressing the existing flooding issues.

Floodplain Storage

Floodplains are the low-lying areas of land where floodwater periodically spreads when a river or stream overtops its banks. The floodplain provides a valuable function by storing floodwaters, buffering the effect of peak runoff, lessening erosion, and capturing nutrient-laden sediment.

Communities, like the Moodna Creek watershed, can reduce flooding by rehabilitating water conveyance channels to slow down the flow, increasing floodplain storage in order to intercept rainwater closer to where it falls, and creating floodplain benches to store flood water conveyed in the channel.  Increasing floodplain storage can be an approach that mimics and enhances the natural functions of the system.

One of the major causes of flooding along the Lower Moodna was the channel’s inability to maintain and hold high volumes of water caused by rain events. During a significant rain event, the Lower Moodna channel tends to swell, and water spills over its banks and into the community causing flooding. One way to resolve this issue is by changing the grading and increasing the size and depth of the floodplain in certain areas to safely store and infiltrate floodwater. The project team identified several additional opportunities to increase floodplain storage throughout the watershed.

One of the primary areas of opportunity was the Storm King Golf Club project site (above). The team analyzed the topography of the golf course to see if directing flow onto the greens would alter the extent and reach of the floodplain thus reducing the potential for flooding along the roadways and properties in the adjacent neighborhoods. Based on LiDAR data, it was estimated that the alteration of 27 acres could increase floodplain storage by 130.5 acre-feet, which is equivalent to approximately 42.5 million gallons per event.

Land Preservation & Critical Environmental Area Designation

For areas where land preservation is not a financially viable option, but the land is undeveloped, prone to flooding, and offers ecological value that would be impacted by development, the project team recommended a potential Critical Environmental Area (CEA) designation. A CEA designation does not protect land in perpetuity from development, but would trigger environmental reviews for proposed development under the NY State Quality Environmental Review Act. And, the designation provides an additional layer of scrutiny on projects to ensure they will not exacerbate flooding within the watershed or result in an unintentional increase in risk to existing properties and infrastructure.

Conserved riparian areas also generate a range of ecosystem services, in addition to the hazard mitigation benefits they provide. Protected forests, wetlands, and grasslands along rivers and streams can improve water quality, provide habitat to many species, and offer a wide range of recreational opportunities. Given the co-benefits that protected lands provide, there is growing interest in floodplain conservation as a flood damage reduction strategy.


These are just a few of the flood risk reduction strategies we recommended for the Lower Moodna Creek watershed. For a more in-depth look at the proposed flood mitigation strategies and techniques, download a free copy of our Moodna Creek Watershed and Flood Mitigation Assessment presentation.

Revisit part-one of this blog series, which explores some of the concepts and methods used to estimate flood risk for existing conditions in the year 2050 and develop a flood management strategy.

Two-Part Blog Series: Flood Assessment, Mitigation & Management

For more information about Princeton Hydro’s flood management services, go here: http://bit.ly/PHfloodplain

Conservation Spotlight: Reducing Flood Risk and Restoring Wetlands in Jamaica Bay

Located in Queens, New York on the northern shore of Jamaica Bay, Spring Creek South contains approximately 237 acres of undeveloped land, including wetlands and 2.4 miles of coastline. The site is bounded by the Howard Beach residential neighborhood in Queens, a commercial area along Cross Bay Boulevard, the Belt Parkway, and Jamaica Bay. The northwest section of Spring Creek South is part of the National Park Service’s Gateway National Recreation Area, and is largely comprised of small patches of degraded tidal marsh and disturbed and degraded upland ecosystems.

On October 29, 2012, Hurricane Sandy drove a catastrophic storm surge into the New Jersey and New York coastlines. Spring Creek South and the surrounding community of Howard Beach experienced record flooding and damage to property and critical infrastructure. Storm tides caused damage and erosion along the shoreline and in the salt marsh area, degrading important habitat and leaving the site vulnerable to invasive species.

Hurricane Sandy Aftermath at Howard Beach, taken 10/30/2012 by Pam Andrade

The New York State Division of Homeland Security and Emergency Services (NYSDHSES) was awarded funding from FEMA’s Hazard Mitigation Grant Program to restore Spring Creek South. The U.S. Army Corps of Engineers (USACE) New York District, serving as project administrator, contracted Princeton Hydro to provide ecosystem restoration services. The goal of the project is to reduce future flood risk exposure while also protecting, restoring, and improving the quality and function of ecological systems; improving stormwater management and water quality; and enhancing the park’s visitor experience.

To achieve this goal, the project team is using an integrated approach that involves utilizing green infrastructure to create a natural barrier for the community and reduce the risks of coastal storms. Project activities include berm construction and the restoration of tidal marsh, creation of freshwater wetland forest, and creation of maritime shrub, forest, and grassland habitats, as well as stabilization of the existing shoreline.

On December 31, 2018, we completed Phase One of the project, which entails engineering design and preliminary permitting. More specifically, we’ve provided conceptual planning; analysis of subsurface soils for geotechnical properties and hazardous waste; coastal and freshwater wetland delineations; biological benchmarking analysis; and the development of sea level rise curves and two-dimensional hydrologic and hydraulic coastal modeling. As part of the hydrology study, we analyzed what the site could be expected to look like in 50 years due to climate changes and sea level rise. Our engineering design was also brought to 65% completion.

We also obtained permits, prepared the Environmental Assessment (EA), and oversaw the National Environmental Policy Act (NEPA) process. The EA received a “Finding of No Significant Impact” (FONSI) from FEMA, which means the environmental analysis and interagency review concluded that the project has no significant impacts on the quality of the environment.

Due to the complex nature of this project and its location, we are coordinating with a variety of different entities, including the local Howard Beach Community Board, the FAA (proximity to JFK International Airport), Port Authority, USACE, NOAA Fisheries, USFWS, USEPA, NYSDEC, NYC DEP, the National Park Service, HDR Engineering and WSP Engineering.

Phase Two of the project is the construction phase, which is expected to take about two years to complete. A key part of the Spring Creek South construction activities is the restoration of approximately 40 acres of tidal marsh, which is anticipated to improve water quality locally by stabilizing sediment, reducing erosion, and filtering dissolved particulate materials. The project team will restore existing coastline areas and install a salt marsh along the shoreline. Planted with native flora, like Spartina alterniflora, a perennial deciduous grass found in intertidal wetlands, the coastal salt marsh will help to stabilize sediment. Additionally, removing invasive species like Phragmites australis from the area and replacing it with native plant species will increase the ability for native vegetation to colonize the site, improve vegetative diversity, and reduce fire risk in the park.

A forested wetland area and berm will also be created in order to provide the surrounding communities with natural shields and buffers to future storms. The berm, with an elevation of 19 feet (NAVD88), will help to manage the risk of storm surge flooding caused by coastal storms. The forested wetland area will also provide improved stormwater runoff storage, naturally filter stormwater, and, via flap gates, direct its flow toward Jamaica Bay, away from residential and commercial properties.

These measures will help to dissipate wind and wave energy, increase shoreline resilience, improve stormwater management at the site, and create habitat that increases the ecological value and biodiversity at the site, while providing resilience benefits. Restoration activities will benefit vulnerable and rare ecological communities by producing localized environmental enhancements, including improving water quality and creating and restoring habitat. The project also increases opportunities for recreational uses such as wildlife viewing/photography, fishing, and nature study.

Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of wetland rehabilitation projects. To learn more about some of our ecosystem restoration and enhancement services, visit: bit.ly/PHwetland.

 

Understanding and Implementing Green Infrastructure

By Tucker Simmons and Dr. Clay Emerson, PE, CFM

People generally think of green infrastructure as an eco-friendly way to handle stormwater runoff. While many green infrastructure elements are planned and managed specifically for stormwater control, the capabilities and benefits are far reaching. In this piece, we’ll provide an in-depth look at all that green infrastructure encompasses, best practices, and real-world examples of green infrastructure projects in action.

WHAT IS GREEN INFRASTRUCTURE?

Defined as an approach to water management that protects, restores, or mimics the natural water cycle, green infrastructure can be implemented for large scale projects and small scale projects alike.

Unlike conventional, or “gray” infrastructure, green infrastructure uses vegetation, soil, and other natural components to manage stormwater and generate healthier urban environments. Green infrastructure systems mimic natural hydrology to take advantage of interception, evapotranspiration and infiltration of stormwater runoff at its source. Examples include permeable pavers, rain gardens, bioretention basins, rain barrels, and tree boxes.

WHY IS GREEN INFRASTRUCTURE BENEFICIAL?

Green infrastructure provides various benefits, including cleaning and conserving water, reducing flooding, improving public health, providing jobs, beautifying neighborhoods, supporting wildlife and providing economic benefits at both the larger community and individual household level. Let’s take a closer look at some of the primary benefits:

Prevents Flooding: By absorbing and slowing the flow of water, green infrastructure can reduce the burden on storm sewer systems and mitigate localized flooding.

Saves Money: While some green infrastructure designs may require the same or greater initial investment than conventional strategies, green design methods provide a big return in reducing costs over the long-term.

Improves Water Quality: Through natural absorption and filtration processes, green infrastructure significantly reduces stormwater runoff volume, decreases the pollutants and particulates within the stormwater, and improves the quality of the runoff flowing into surrounding water bodies.

Improves Air Quality: Green infrastructure techniques like tree boxes, green roofs and vegetative barriers have long been associated with improving air quality. Urban tree boxes help shade surfaces, effectively putting moisture into the air while reducing greenhouse gases. Trees mitigate heat and air pollution, both cooling and cleaning the air.

Enhances Aesthetics: Many green infrastructure practices utilize native plants and trees to improve runoff absorption and reduce stormwater pollution. This vegetation can provide a sound barrier or privacy screen for properties, and enhances the overall aesthetics of the surrounding environment. 

Increases Property Values: Research shows that property values increase when trees and other vegetation are present in urban areas. Planting trees can increase property values by as much as 15%.

LARGE-SCALE GREEN INFRASTRUCTURE IMPLEMENTATION:

With the use of proper design techniques, green infrastructure can be applied almost anywhere and is especially beneficial in urban areas. In developed environments, unmanaged stormwater creates two major issues: one related to the volume and timing of stormwater runoff (flooding) and the other related to pollutants the water carries. Green Infrastructure in urban environments can recharge groundwater, decrease runoff, improve water quality, and restore aquatic habitats while controlling flooding.

Across the United States, more than 700 cities utilize combined sewer systems (CSS) to collect and convey both sanitary sewage and stormwater to wastewater treatment facilities. During dry weather, all wastewater flows are conveyed to a sewage treatment plant where it receives appropriate treatment before it is discharged to the waterway. However, during heavy rainfall or significant snowmelt, the additional flow exceeds the capacity of the system resulting in a discharge of untreated sewage and stormwater to the waterway; this discharge is referred to as a combined sewer overflow (CSOs). For many cities with CSS, CSOs remain one of the greatest challenges to meeting water quality standards. Green infrastructure practices mimic natural hydrologic processes to reduce the quantity and/or rate of stormwater flows into the CSS.

New Jersey, as part of the 2012 USEPA’s Integrated Municipal Stormwater and Wastewater Planning Approach Framework, utilized green infrastructure as one of the main components in managing its CSS and reducing CSOs. Because of the flexibility of green infrastructure in design performance, it can reduce and mitigate localized flooding and sewer back-ups while also reducing CSOs. An integrated plan that addresses both overflows and flooding can often be more cost-effective than addressing these issues separately. New Jersey, in addition to meeting its CSO reduction goals, is using green infrastructure throughout the sewershed to build resilience to large storm events and improve stormwater management.

Stormwater planters installed by the Philadelphia Water Department

Philadelphia takes advantage of numerous green stormwater infrastructure programs such as Green Streets, Green Schools, and Green Parking. There are a wide variety of green infrastructure practices that Philadelphia is using to decrease stormwater runoff throughout the entire city. After just five years of implementing the Green City, Green Waterplan, Philadelphia has reduced the stormwater pollution entering its waterways by 85%. Using over 1,100 green stormwater tools (i.e. CSO, living landscapes, permeable surfaces, etc.), in just one year, Philadelphia was able to prevent over 1.7 billion gallons of polluted water from entering their rivers and streams.

New York City is using a green infrastructure program, led by its Department of Environmental Protection, that utilizes multiple green infrastructure practices to promote the natural movement of water while preventing polluted stormwater runoff from entering sewer systems and surrounding waterbodies. While attaining this goal, the green infrastructure also provides improvements in water and air quality, as well as improves the aesthetics of the streets and neighborhoods. According to the NYC Green Infrastructure Plan, “By 2030, we estimate that New Yorkers will receive between $139 million and $418 million in additional benefits such as reduced energy bills, increased property values, and improved health.”

SMALL-SCALE GREEN INFRASTRUCTURE IMPLEMENTATION:

Green infrastructure techniques are extremely beneficial on every scale. Residential homes and neighborhoods can benefit from the implementation of green infrastructure in more ways than many people realize. There are a wide variety of green infrastructure projects that can be completed with a relatively small time and financial investment. Many of us at Princeton Hydro have incorporated green infrastructure practices into our homes and properties. Here’s a look at some of those projects in action:

Dr. Steve Souza, a founding principal of Princeton Hydro, installed rain gardens throughout his property utilizing native, drought-resistant, pollinator-attracting plants. The rain gardens are designed to capture and infiltrate rainwater runoff from the roof, driveway, patio and lawn.

Princeton Hydro’s President Geoffrey Goll, P.E. built an infiltration trench in his backyard. An infiltration trench is a type of best management practice (BMP) that is used to manage stormwater runoff, prevent flooding and downstream erosion, and improve water quality in adjacent waterways. 

And, in the front yard, Geoffrey installed a variety of wildflower plantings.

MUNICIPAL TOOLKIT

An interactive website toolkit was recently launched by New Jersey Future to help municipalities across the state incorporate green infrastructure projects into their communities. For this project, Princeton Hydro’s engineers and scientists provided real-world examples integrating green infrastructure into development in order to bring to light the benefits and importance of investing in green infrastructure at the local level. The New Jersey Green Infrastructure Municipal Toolkit provides expert information on planning, implementing, and sustaining green infrastructure to manage stormwater. This toolkit acts as a one-stop resource for community leaders who want to sustainably manage stormwater, reduce localized flooding, and improve water quality.

GET STARTED

Since its inception, Princeton Hydro has been a leader in innovative, cost-effective, and environmentally sound stormwater management systems. Long before the term “green infrastructure” was part of the design community’s lexicon, the firm’s engineers were integrating stormwater management with natural systems to fulfill such diverse objectives as flood control, water quality protection, and pollutant reduction. Princeton Hydro has developed regional nonpoint source pollutant budgets for over 100 waterways. The preparation of stormwater management plans and design of stormwater management systems for pollutant reduction is an integral part of many of the firm’s projects.

Interested in working with us on your next Green Infrastructure project? Contact us here.


Tucker Simmons, Water Resources Intern

Tucker is a Civil and Environmental Engineering major at Rowan University focusing on Water Resources Engineering. He is the President and player of the Rowan University Men’s DII Ice Hockey Team. His Junior Clinic experience includes the study of Bio-Cemented sand and the Remote Sensing of Landfill Fires. In the future, Tucker hopes to work on creating a more sustainable environment. Tucker enjoys playing ice hockey, being with friends and family, and exercising.

 

Clay Emerson, Senior Project Manager

Clay’s areas of expertise include hydrologic and hydraulic analysis, stormwater management and infiltration, nonpoint source (NPS) pollution, watershed modeling, groundwater hydrology/modeling, and water quality and quantity monitoring at both the individual site and watershed scales. His educational and work experience includes a substantial amount of crossover between engineering and environmental science applications. He has specific expertise in the field of stormwater infiltration and has conducted extensive research on the NPS pollution control and water quantity control performance of stormwater BMPs. He regularly disseminates his monitoring results through numerous peer-reviewed journal publications, magazine articles, and presentations.