Celebrating the Columbia Dam Removal

A view of the Columbia Dam at the beginning of the removal process.

On a bright, sunny day in Warren County, Princeton Hydro celebrated the Columbia Dam Removal Project with New Jersey Department of Environmental Protection (NJDEP) Commissioner Catherine McCabe, The New Jersey Nature Conservancy (event organizer), American Rivers, U.S. Fish and Wildlife Service (USFWS), NJDEP Division of Fish and Wildlife Service, RiverLogic Solutions, and SumCo Eco-Contracting.

Beth Styler-Barry, River Restoration Manager, New Jersey Nature Conservancy

Overlooking the soon-to-be removed, century-old, hydroelectric Columbia Dam, key stakeholders, including Princeton Hydro’s President Geoffrey Goll, P.E. and New Jersey Nature Conservancy’s Director Barbara Brummer, remarked on the success of the project, collaborative team efforts, and future benefits to the Paulins Kill habitat.

NJ Nature Conservancy’s River Restoration Manager, Beth Styler-Barry thanked project funders including NJDEP’s Office of Natural Resource Restoration, USFWS’s Fish Passage Program, National Fish and Wildlife Foundation’s Bring Back The Natives program, Natural Resources Conservation Service’s Regional Conservation Partnership Program, New Jersey Corporate Wetlands Restoration Partnership, Leavens Foundation, Tom’s of Maine, and Nature Conservancy members and donors.

“We made a commitment early-on to a 10-year monitoring and measurement plan. The removal of Columbia Dam is an opportunity to gain new knowledge and generate data that builds the case for this type of restoration. We’ll be looking at everything from mussels to temperature to geomorphological changes to increasing our targeted efficiencies. We’re also going to use images taken from repeated drone flyovers to look closely at changes in topography,” said Styler-Barry.

NJDEP Commissioner Catherine McCabe with NJ Division of Fish & Wildlife and NJDEP officials.

NJDEP Commissioner Catherine McCabe added, “The Columbia Dam is ranked in the top 5% of the nearly 14,000 dams that were assessed for priority. It will give us one of the most bangs for our buck in terms of fish and native species that we’ll be able to bring back up here.” She added, “This is exactly what Natural Resources Damages funds should be used for, and we are thrilled to see it come to fruition.”

Geoffrey Goll, P.E., President, Princeton Hydro

Back in the day, this dam structure was a marvel of engineering. Because concrete was very expensive during the time of construction, a patented, innovative “ransom hollow” design was used, which means it has a hollow center with series of doorways underneath the dam, explained Geoffrey Goll, P.E., President of Princeton Hydro. However, sustainability and climate change are very important issues today and must be taken into consideration for the life-cycle of a dam.

“Removal is a logical step in the history of this dam. Dam removals are the most impactful restorations. They provide the most ecological uplift and improvement for rivers,” Goll stated.

For Princeton Hydro, this project involved every discipline we have in the firm: civil engineering, fishery biology, wetland science, hydraulics, geotechnical engineering, and regulatory work. We were contracted by American Rivers to investigate, design, and permit for the removal of this dam for the New Jersey Nature Conservancy. Our team of engineers and ecologists studied the feasibility of removal by collecting sediment samples, performed bioassay tests, and conducted a hydraulic analysis of upstream and downstream conditions. Currently, we are providing construction administration services during the removal process. This project is a great example of our ability to complete multi-disciplinary projects in-house.

Project partners ready for the first hammer with the celebratory dynamite and sledge hammers.

At the end of the press conference, project partners celebrated the anticipation of the “first hammer” in the near future with an imitation dynamite siren and plastic sledge hammers. It was truly a keystone moment for everyone involved in this project.

The remnant dam downstream has already been removed and the main dam is due to be removed very soon. Check out our previous story with a series of photos documenting this first-step in the overall dam removal process: bit.ly/ColumbiaDamRemoval. Stay tuned for photos during the main dam removal process too.

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast. To learn more about our fish passage and dam removal engineering services, visitbit.ly/DamBarrier.

PHOTOS: Columbia Dam Removal

VIDEO: “Columbia Lake Dam when the water level was 18 inches to 2 feet lower”
Video courtesy of Matt Hencheck

In Northwest New Jersey on the Paulins Kill, an important tributary to the Delaware River, the century-old hydroelectric Columbia Dam is actively being removed. Princeton Hydro was contracted by American Rivers to investigate, design, and apply for permits for the removal of this dam for the New Jersey chapter of The Nature Conservancy. Our team of engineers and ecologists studied the feasibility of removal by collecting sediment samples, performing bioassay tests, and conducting a hydraulic analysis of upstream and downstream conditions. We’re excited to report that the Columbia Dam removal has officially commenced!

The New Jersey Department of Environmental Protection started draining water from Columbia Lake a few weeks ago, which was the first step in removing the dam. Princeton Hydro has subsequently been contracted by The Nature Conservancy to provide construction administration services.  Photos below show the water at lowered levels at the impoundments.

“Dewatering Impoundment” Photo by Princeton Hydro

“An aerial drone snapshot when water levels were down about 5 feet at the upper impoundment” Photo courtesy of the New Jersey Chapter of The Nature Conservancy

Last week, the first hammer hit the wall of a downstream dam remnant, officially starting the removal process.

“The first hammer”  Photo courtesy of Dale Bentz, RiverLogic Solutions

The dam removal process will last a few weeks, as the contractor actively knocks down the thick concrete wall.

“Pressure and time”  Photo courtesy of Dale Bentz, RiverLogic Solutions

“Halfway there”  Photo courtesy of Dale Bentz, RiverLogic Solutions

Once the dam is removed, there is a high probability that populations of American Shad and River Herring will be restored. It may also enhance American Eel migration. As a coldwater fishery, this reach also has significant potential for trout species, as well as Smallmouth Bass.

(Top) Before: Photo of the Columbia Dam before construction. (Bottom) After: Princeton Hydro’s rendering of what the river will look like once the dam is removed.

“It is very exciting to be a part of such a monumental effort for the restoration of the Paulins Kill. This river, once a major migration route for diadromous fish like American Shad, will once again be a nursery for this Delaware River icon,” said Geoffrey Goll, PE, President and co-founder of Princeton Hydro. “The removal of these dams will also restore the functions and values of a riparian corridor and floodplain, eliminate costs to the taxpayer for the maintenance of a dam and lake, and provide additional riverine recreational opportunities. I expect to see the same resilience and positive impact to the Delaware River as the recent barrier removals on another major NJ tributary, the Musconetcong River. It is a win-win for NJ, and with The Nature Conservancy at the helm and expert guidance from American Rivers, it has been an experience of a career.”

This project could not have been possible without the hard work and dedication of the following partner organizations: The Nature Conservancy of New Jersey, American Rivers, U.S. Fish and Wildlife Service, RiverLogic Solutions, NJDEP Division of Fish and Wildlife Service, and SumCo EcoContracting.

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast. To learn more about our fish passage and dam removal engineering services, visitbit.ly/DamBarrier.


This video from 2016 features the Nature Conservancy’s New Jersey State Director Barbara Brummer, Ph.D. speaking on the Columbia Dam removal. Video credit: NJ Herald.

Dam Removal on the Moosup River

Moosup River

The Moosup River is a beautiful 30-mile-long, trout river flowing through Connecticut and Rhode Island, eventually emptying into the Quinebaug River.

Several dams, most originally built in the 1800s or early 1900s, impeded the river’s natural flow, impaired habitat, fragmented the river system, and prevented fish from swimming upstream to their native spawning grounds.

In 2013, American Rivers, CTDEEP Fisheries, and Natural Resources Conservation Service began collaborating on the removal of multiple dams and remnant dams as part of a larger project to restore connectivity to the Moosup River in the Town of Plainfield. Princeton Hydro and RiverLogic Solutions were contracted to provide design-build and permitting services.

As part of this larger multi-year effort, five dams are planned for removal from the Moosup River. The most downstream barrier, the Hale Factory Dam was removed in 2014. The remnants of the toppled Griswold Rubber Dam were removed in 2015. In 2017, the removal of Brunswick Mill Dam #1 was completed. And, two more dams, downstream of New Brunswick Mill Dam #1, are currently under consideration for removal. When fully completed, the Moosup River Dam Removal Project will reconnect fish habitats along 6.9 miles of the Moosup River.

 

Hale Factory Dam

The Hale Factory Dam was constructed of a boulder core capped in a one-foot-thick concrete layer. The dam was partially breached as the concrete cap had deteriorated severely over the years, allowing flow to pass between boulders and allowing the normal pool elevation to drop substantially from its former design height.

The resource delineation conducted on site identified a vernal pool with an 18 inch culvert outlet that discharged 90 feet upstream of the dam. To preserve this ecological resource on the site, the vernal pool was not disturbed during the dam removal.

Princeton Hydro provided a field assessment, sediment characterization and analysis, final design and permit application package for the full removal of the Hale Factory Dam. Full removal of the dam entailed demolition and removal of the concrete, and re-use of the natural cobbles and boulders from the dam to create in-stream habitat features. Once completed, the river and its boulders appeared as if placed by nature itself, with the former dam’s presence indicated only by the age-old lichen covered field stone walls leading up to the banks.

 

Griswold Rubber Dam

The Griswold Rubber Dam was in a gravel-cobble reach of the river approximately 80 feet wide in the Village of Moosup and was adjacent to the 1992 expansion of the Griswold Rubber factory.  At one time, the dam stood approximately 10 feet high and 150 feet long. The dam was constructed of a large segmented concrete slab that had since toppled over and was lying nearly flat on the river bed in multiple sections. The dam structure, having failed, served no useful purpose. Despite being toppled, the dam still presented a deterrent to the effective movement of aquatic organisms at normal to low flows and was therefore worthy of complete removal to restore river connectivity.

Princeton Hydro conducted an initial field investigation with RiverLogic Solutions to gain insights regarding the construction approach. Princeton Hydro then followed-up with a more detailed assessment of river bed sediment, geomorphic conditions, the likely riverine response, construction access, and other design related issues that were incorporated into design plans and permit applications. The restoration design Princeton Hydro developed aimed to remove the partial barrier to fish passage with as little disturbance to surrounding infrastructure and resources as possible.

 

Brunswick Mill Dam #1

This dilapidated timber crib dam stood approximately 4-feet high and spanned the channel at approximately 130 feet. The timbers ranged from 1.5 to 2.5 feet in diameter and over 20 feet in length; 50 were integrated into the dam. The timber crib was filled with gravel and other debris, and the gravel substrate extended 50 feet upstream. The original dam was significantly higher, but the timber crib spillway deteriorated and gradually collapsed over time and only a portion of the structure remained.

For this project, Princeton Hydro completed sediment investigation, sampling and analysis; hydrologic and hydraulic analysis; and provided design and engineering for full removal of the dam. Princeton Hydro contracted with an archeologist / industrial historian, and together closely observed the dam deconstruction to observe and record how the timber crib had been assembled. Multiple types of iron pins and wooden pegs revealed how the dam had been repaired over the years – findings, old maps, and photos were incorporated into a historical report filed with the state historic preservation office. Princeton Hydro coordinated to have the old timbers salvaged for eventual re-use. Removing the Brunswick Mill Dam #1 was a continuation of the large scale Moosup River restoration effort and paved the way for the potential removal of two more dams downstream in the coming years.

“When a dam is breached and taken out, the tangible results are very quickly noticeable,” said Paul Woodworth, Princeton Hydro Fluvial Geomorphologist. “The return of migratory fish is a very strong indicator of the ecological benefits of dam removal – sometimes after a removal you can see fish immediately swimming upstream. Removing dams also improves safety in nearby communities, reestablishes the natural flow of sediment, improves water quality, provides new recreation opportunities, and restores habitats for fish and wildlife.”

Click here to read more about Princeton Hydro’s engineering services for the restoration and removal of dams.

New Book Aims to Protect and Restore Fish Migrations

Rivers are a critical natural resource and an essential element for the health and survival of billions of people and countless species. Flourishing populations of migratory fish are an important indicator of a healthy, coastally connected river and a robust aquatic ecosystem as a whole. Migratory fish help to maintain a balanced food web, support productive river systems, and provide income for people around the world.

Yet many migratory fish species are severely threatened primarily due to man-made obstacles like dams and weirs, which disrupt the natural flow of rivers and prevent fish migration. When fish can’t reach their habitat, they can’t reproduce and maintain their populations.

Photo Credit: “From Sea to Source 2.0”

A new book, titled From Sea to Source 2.0, explores the challenges that lie behind restoration of fish migration in rivers around the world and provides a practical guide to promoting the protection and restoration of fish migration. The book is a unique collaboration of over 100 international fisheries professionals and supported by river managers, governments, research institutes and NGOs including World Wildlife Fund and The Nature Conservancy. Geared toward practitioners, but also a wonderful resource for the general public, the book is comprised of inspiring stories from nearly every continent on the planet. Click here to download it for free.

“Ultimately our ambition is to contribute in a positive way to making a better world and a positive difference for migratory fish, nature and humans on local and global levels by inspiring new initiatives for and with people all around the world,” as stated on www.fromseatosource.com. “Whether the challenge is simply to increase access to spawning habitats through connectivity improvements for salmon, or to maintain the livelihoods for hundreds of millions of people dependent upon fish and fisheries in the great rivers of Asia, Africa and South America, we hoped our book would help to achieve these goals.”

Princeton Hydro’s Dam Removal Expert Laura Wildman, P.E. and Fluvial Geomorphologist Paul Woodworth are proud contributors to the book, helping to write the dam removal chapter, creating a dam removal flow chart for the book, and providing multiple photos utilized in the book. Princeton Hydro is also listed as a contributing sponsor.

“We’re so proud to be part of this incredible project with so many partners globally,” said Wildman. “We envision that this book will provide a valuable resource and inspiration for those in countries and regions where the importance of restoring riverine connectivity is newly gaining momentum. We hope it will help emphasize the importance of finding balanced and environmentally informed solutions when proposing additional utilization of public trust resources such as rivers.”

Approximately 40% of all fish species in the world reside in freshwater ecosystems, contributing economic and ecological benefits and value. It’s critical that we support efforts that aim to protect migratory fish species, reconnect rivers, sustain fish passage, and preserve free-flowing rivers through removing unnecessary dams, reconnecting floodplains, managing our water use, and managing hydropower for sustainable rivers.

Education and awareness building are key first steps in protecting rivers. From Sea to Source 2.0 seeks to inform, educate and inspire those who want to know more about how to meet the challenges of restoring fish migration in rivers around the world.  The book is regarded as a crucial resource in the ongoing fight to protect and preserve the enormous value of our waterways.

Get your free copy here.

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast. To learn more about our fish passage and dam removal engineering services, visit: bit.ly/DamBarrier.

Conservation Spotlight: Restoring Fish Passage on the Noroton River

For thousands of years, river herring swam from the Atlantic Ocean through the Long Island Sound and up the Noroton River to spawn each spring. Then, they returned to the ocean until the next spawning season.

Back in the 1920s, President Dwight D. Eisenhower’s administration began connecting the country through a massive interstate highway system. As part of the infrastructure plan, hundreds of thousands of culverts were built across the U.S. with the intention of moving water quickly and efficiently. While that goal was met, many migratory fish and other aquatic organisms could not overcome the culverts’ high-velocity flows, shallow water depths, and perched outlets. This infrastructure prevented them from reaching their native migratory destinations.

By the late 1950s, Interstate 95 cut through Connecticut’s coastal rivers, and culverts were installed to convey river flows. Alewives, American Shad, Blueback Herring, and other native fish species were unable to navigate the culverts. Their populations dwindled to the point where Connecticut, along with Rhode Island, Massachusetts, and North Carolina, instituted moratoriums on catching and keeping the valued forage fish.

Along the Noroton River, three parallel concrete culverts, each 300-feet long, 13-feet wide and 7-feet in height were installed, completely blocking upstream fish passage.  In order to restore important fish populations and revitalize the Noroton River, Save the Sound launched a project that reopened approximately seven miles of the river, allowing migratory fish populations to safely and easily travel through the culverts to reach their original spawning habitat upstream.

The project is a collaboration among Save the Sound, Darien Land Trust, Connecticut Department of Energy and Environmental Protection (CTDEEP), Connecticut Department of Transportation, Princeton Hydro, and other partners. For the project, Princeton Hydro lead design engineering and guided the construction of the following elements to restore upstream fish passage:

  • The installation of a concrete weir at the upstream end of the culvert to increase water depths in one culvert during low-flow periods;
  • The installation of concrete baffles to reduce flow velocities and create resting places for fish, and;
  • The installation of a naturalized, step-pool, rock ramp at the downstream end of the project to allow fish to ascend into the culvert gradually, overcoming the two-foot vertical drop present under existing conditions. The rock ramp consists of a grouted riverstone base with large grouted boulders arranged to make steps, with low-flow passage channels, between a series of pools approximately 1-foot deep that create resting places for upstream migrating fish.

Reopening river passage for migratory species will improve not only the health of the Noroton River itself, but will also benefit the overall ecosystem of Long Island Sound. Over the last decade, fish passage projects around the sound’s Connecticut and New York shores have dramatically increased freshwater spawning habitat for the foundational species whose return is restoring a more vibrant food web to the Long Island Sound.

Construction of the baffles and rock ramp were completed in time for the 2018 migratory season. Construction of the concrete weir is on temporary hold for low-flow conditions. On April 26, 2018, project partners gathered for a project celebration and the release of migratory fish by CTDEEP at an upstream location.

“It’s fascinating to feel the change in the flow patterns against your legs as you walk through the baffled culvert knowing that it will now facilitate fish passage through this restored reach,” said Princeton Hydro’s New England Regional Office Director and Water Resources and Fisheries Engineer Laura Wildman, P.E. “It is a very attractive and natural-looking fishway, and we’re proud to have created a design that fits so well into the surrounding landscape.”

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast.  To learn more about our fish passage and dam removal engineering services, visit: bit.ly/DamBarrier.

Musconetcong River Volunteer Cleanup

The Musconetcong Watershed Association (MWA) held its 26th Annual Musconetcong River Cleanup on April 14. Volunteers conducted cleanup efforts at various locations all along the Musconetcong River from its start at Lake Hopatcong down to where it meets the Delaware River. Princeton Hydro, a proud sponsor of the event, has investigated, designed and permitted five dam removals along the Musconetcong River.

Princeton Hydro led a volunteer team near the Warren Glen Dam site and former Hughesville Dam site. The team picked-up garbage along the road and riverbank, and pulled trash from the riverbed. In 2016, we designed and oversaw the Hughesville Dam removal and streambank restoration project, which enabled the return of American shad to the river for the first time in decades.

“We enjoyed the beautiful, warm, and sunny Saturday morning bonding with our Princeton Hydro colleagues and friends, while giving back to the Musconetcong Watershed Association,” said Geoffery Goll, President of Princeton Hydro. “Our successful partnership with MWA on multiple dam removals in critical locations has expedited the restoration and protection of the Musconetcong River.”

MWA hosts cleanups throughout the year. If you have an idea for a volunteer cleanup day, please email info@musconetcong.org.

New Video Celebrates 50th Anniversary of Wild & Scenic Rivers Act

Credit: NPS.gov

Communities across the nation are preparing to celebrate the 50th anniversary of the Wild and Scenic Rivers Act. This landmark legislation passed by Congress in October 1968 safeguards the free-flowing character of rivers by precluding them from being dammed, while allowing the public to enjoy them. It encourages river management and promotes public participation in protecting streams.

As part of the celebration, the National Park Service released a new video highlighting a handful of ‘Wild and Scenic’ designated rivers in the Northeast – the Farmington, Sudbury, Assabet, Concord, and Musconetcong Rivers – along with the organizations and community volunteers who work together to protect and care for these rivers.

Princeton Hydro is proud to work with two of the river stewards featured in the video: Musconetcong Watershed Association (MWA) and Farmington River Watershed Association (FRWA).

The Musconetcong River:

Designated ‘Wild and Scenic’ in 2006, the Musconetcong River is a 45.7-mile-long tributary of the Delaware River in northwestern New Jersey.

Princeton Hydro has been working with MWA in the areas of river restoration, dam removal, and engineering consulting since 2003 when the efforts to remove the Gruendyke Mill Dam in Hackettstown, NJ began. To date, Princeton Hydro has worked with MWA to remove five dams on the Musconetcong River, the most recent being the Hughesville Dam.

As noted in the video, the removal of these dams, especially the Hughesville dam, was a major milestone in restoring migratory fish passage along the Musconetcong. Only a year after the completion of the dam removal, American shad returned to the “Musky” for the first time in 250 years.

“The direction the river is moving bodes well for its recovery,” said Princeton Hydro President Geoff Goll, P.E., who was interviewed in the 50th anniversary video. “This multidisciplinary approach using ecology and engineering, paired with a dynamic stakeholder partnership, lead to a successful river restoration, where native fish populations returned within a year. ”

The Farmington River:

The Upper Farmington River, designated as ‘Wild and Scenic’ in 1994, stretches 14-miles through Connecticut starting above Riverton through the New Hardford/Canton town line. The river is important for outdoor recreation and provides critical habitat for countless wildlife.

Credit: FWRA.orgBack in 2012, Princeton Hydro worked with the FRWA and its project partners to remove the Spoonville Dam. Built in 1899 on the site of a natural 25-foot drop in the riverbed, the dam was originally a hydropower facility. The hurricanes and flood of 1955 breached the dam, opening a 45-foot gap and scattering massive dam fragments in the riverbed downstream. The remnant of the main dam persisted for decades as a 128-foot long, 25-foot high obstacle in the channel. The river poured through the breach in a steep chute that stopped American shad from proceeding further upstream to spawn.

The project was completed, from initial site investigation through engineering assessment and final design, in just six months. The dam removal helped to restore historic fish migrations in the Farmington River (including the American shad) and increase recreation opportunities.

Wild & Scenic Rivers Act:

Credit: NPS.govAs of December 2014 (the last designation), the National ‘Wild and Scenic’ System protects 12,734 miles of 208 rivers in 40 states and the Commonwealth of Puerto Rico; this is a little more than one-quarter of 1% of the nation’s rivers. By comparison, more than 75,000 large dams across the country have modified at least 600,000 miles, or about 17%, of American rivers.

In honor of the 50th anniversary of the Act and in an effort to designate many more miles of river as ‘Wild and Scenic,’ four federal agencies and four nonprofit groups are coordinating nationwide events and outreach. Managing agencies are the Bureau of Land ManagementFish and Wildlife ServiceForest Service, and National Park Service, along with American RiversAmerican WhitewaterRiver Network and River Management Society. Go here for more info: www.wildandscenicrivers50.us.

AQUATIC ORGANISM PASSAGE: A PRINCETON HYDRO BLOG SERIES

Welcome to the second installment of Princeton Hydro’s multi-part blog series about aquatic organism passage.

What you’ll learn:

  • How does promoting aquatic organism passage benefit ecosystems as a whole?
  • How can others, including people, benefit from aquatic organism passage?
  • How has Princeton Hydro supported it?

Photo by Princeton Hydro Founder Steve Souza

Fostering Ecological Balance in Food Webs

A major consequence of poorly designed culverts published in the NRCS' "Federal Stream Corridor Restoration Handbook"is the destabilization of food webs. Sufficient predators and prey must exist to maintain a balanced food web. For example, freshwater mussels (Unionidae) are a common snack among fish. A mussel’s life cycle involves using certain fish as a host for their larvae until these microscopic juveniles mature into their adult forms and drop off. During this period, the host fish will travel, effectively transporting a future food source with it.

In the presence of habitat fragmentation, the isolation of these symbiotic relationships can be devastating. Some mussel species rely on a small circle of fish species as their hosts, and conversely, some fish species rely on specific mussel species as their food. If a fish species is separated from its mussel partner, food shortages owing to a declining adult mussel population can occur.

Widespread Benefits to Flora, Fauna, and People

A shift in the 1980s recognized the importance of redesigning road-stream crossings for several reasons, including restoring aquatic organism passage and maintaining flood resiliency. Replacing culverts with larger structures that better facilitate the movement of both water and aquatic organisms benefit all species. Roads constructed over streams allow people to travel across natural landscapes while culverts that are fish-friendly convey water at a rate similar to the surrounding landscape, reducing scour in stream beds.

A man fly fishes as his dog sits by his side at Ken Lockwood Gorge, Hunterdon County. Photo from State of New Jersey website.

Fish, as well as semi-terrestrial organisms like crabs and salamanders, can take advantage of more natural stream environments and complete their migrations. Anglers appreciate healthy, plentiful fish populations nearly as much as the fish themselves. Recreation and economic growth also improve when streams regain the aquatic biological communities once lost through habitat fragmentation. According to USFWS, for every dollar spent on restoration through the Partners for Fish and Wildlife Program and Coastal Program Restoration Project, states gain $1.90 of economic activity. Stream restoration improves fish and wildlife habitat, which directly supports and enhances recreation opportunities for outdoor enthusiasts thus resulting in increased tourism-related spending and job growth.

Aquatic Organism Passage in Action at Princeton Hydro

Princeton Hydro recently completed a project to facilitate aquatic organism passage for river herring in Red Brook in Plymouth, Massachusetts. Read all about it here!

For an introduction to aquatic organism passage, be sure to check out the first post in this multipart-series.

Sources:

“Aquatic Organism Passage through Bridges and Culverts.” Flow. Vermont Department of Environmental Conservation’s Watershed Management Division, 31 Jan. 2014. Web. 14 Mar. 2017.

Hoffman, R.L., Dunham, J.B., and Hansen, B.P., eds., 2012, Aquatic organism passage at road-stream crossings— Synthesis and guidelines for effectiveness monitoring: U.S. Geological Survey Open-File Report 2012-1090, 64 p.

Jackson, S., 2003. “Design and Construction of Aquatic Organism Passage at Road-Stream Crossings: Ecological Considerations in the Design of River and Stream Crossings.” 20-29 International Conference of Ecology and Transportation, Lake Placid, New York.

Kilgore, Roger T., Bergendahl, Bart S., and Hotchkiss, Rollin H. Publication No. FHWAHIF-11-008 HEC-26. Culvert Design for Aquatic Organism Passage Hydraulic Engineering Circular Number 26. October 2010.

Michigan Natural Features Inventory. Freshwater Mussels of Michigan. Michigan State University, 2005.

 

Musconetcong Watershed Association Presents Princeton Hydro President with Prestigious “Friend of the River” Award

 

Musconetcong Watershed Association (MWA) held a dinner to celebrate its 25th anniversary as well as the 150th anniversary of the Asbury Grist Mill, which the MWA is working to restore. The evening included a cocktail hour, a buffet dinner, silent auction, remarks by the MWA President Tish Lascelle and Executive Director Alan Hunt, and a presentation of awards.

The MWA presented Princeton Hydro PresiPhoto by Tish Lascelle, President, Musconetcong Watershed Associationdent Geoff Goll, PE with the “Friend of the River” Award. This award, which has only been given seven times in MWA’s 25 years of service, recognizes individuals who have made a significant and sustainable difference in the Watershed and helped to advance its mission. Recipients of the Award have also demonstrated outstanding leadership through their volunteer efforts or partnerships with MWA.

Geoff was honored to receive the award alongside Paul Kenney of the National Park Service and Richard C. Cotton, a Managing Partner of the Hawk Pointe Golf Club and Asbury Farms Real Estate. Paul was assigned the Musconetcong River in late 2003 and was instrumental in obtaining the Musconetcong River’s Wild and Scenic Designation in 2006. He has continued to be an excellent resource of the National Park Service.  Richard is a founding member of the MWA’s Board of Trustee’s and continues to serve on the Board. He has dedicated his professional life to striking a balance between economic growth with environmental protection.

Geoff has been working with MWA in the areas of river restoration, dam removal, and engineering consulting since 2003, when the efforts to remove the Gruendyke Mill Dam in Hackettstown, NJ began. He has since worked with the Princeton Hydro team to remove five dams on the Musconetcong River, the most recent being the Hughesville Dam

MWA is an independent, non-profit organization dedicated to protecting and improving the quality of the Musconetcong River and its Watershed, including its natural and cultural resources. Members of the organization are part of a network of individuals, families and companies that care about the Musconetcong River and its watershed, and are dedicated to improving the watershed resources through public education and awareness programs, river water quality monitoring, promotion of sustainable land management practices and community involvement.

During the anniversary dinner, participants also got a sneak peek of a new video from the National Park Service that is set for public release in 2018. The video celebrates the upcoming 50th anniversary of the Federal Wild and Scenic Rivers Act, under which the Musconetcong River is protected, and explores the importance of free-flowing rivers and why Americans treasure them. Representing Princeton Hydro at the awards dinner were Vice President Mark Gallagher, his wife Jennifer, Geoff and his wife Amy, and Director of Engineering Services Mary Paist-Goldman, PE.

 

 

 

 

 

 

 

 

 

 

 

Princeton Hydro Dam Removal Work Featured at Brazilian Workshop

As Brazil is in the midst of a dam-building boom, scientists and engineers gathered at a workshop in Brazil to discuss, “Dam Removal & Optimizing Hydro Locations to Benefit Species Diversity in Brazil.”

Laura Wildman, P.E., Water Resources and Fisheries Engineer and Director of Princeton Hydro’s New England Regional Office, was invited to speak at the workshop. Her presentation focused on why we remove dams in the U.S. (the key drivers), how we analyze them for removal, and what we are learning through a wide diversity of completed case studies.

“It was fascinating to discuss a topic, such as the removal of dams, right as Brazil is focusing on building more hydro capacity,” said Laura. “Hopefully it is a sign that the hydro industry in Brazil, along with all the great Brazilian fisheries researchers, are quite forward thinking and are determined to maintain their country’s rich species diversity while also enhancing their energy options.”

The workshop, hosted by CEMIG and held at UFMG, involved many universities, including our workshop host Paulo Pompeu from UFLA, Dr. Paul Kemp from University of Southhampton, Dr. Jesse O’Hanley of Kent Business School, and many others.

The gathering inspired a lot of interesting dialogue around dam removal, optimizing locations for new hydro facilities, and how to best sustain connectivity and species diversity. Laura’s presentation entitled “Dam removal in the United States” along with the other conference presentations will be available on the CEMIG website soon or check back here on the Princeton Hydro blog for presentation links.