Princeton Hydro Founder Invited to Speak at EPA’s Harmful Algal Blooms Workshop

Princeton Hydro Founder Dr. Steve Souza was an invited speaker at the USEPA Region 2 Freshwater Harmful Algal Blooms (HABs) and Public Drinking Water Systems workshop last week in Manhattan. The objective of the workshop was to share information about the monitoring and assessment of freshwater HABs and the efforts to minimize their effect on public drinking water and the recreational uses of lakes.

Steve’s presentation focused on the proactive management of HABs, providing useful tips for and real-world examples of how to address HABs before they manifest, and, if a HAB does manifest, how to prevent it from further exacerbating water quality and cyanotoxin problems.

The workshop was well attended with 80 people on site and 40 others participating via webinar link. Steve was joined by nine other invited speakers, most of whom were representing the USEPA, NYSDEC and NJDEP, who gave presentations on a variety of HABs related topics, including the optimization of water treatment operations to minimize cyanotoxin risks surveillance and assessment of HABs, and communicating HABs risks in recreational lakes and drinking water reservoirs.

If you’re interested in learning more about HABs, you can view a complete copy of Steve’s presentation, titled Proactive Management of Harmful Algae Blooms in Drinking Water and Recreational Waterbodies, by clicking the image below. Please contact us anytime to discuss how Princeton Hydro’s Invasive Weed and Algae Management Services can be of service to you.

The USEPA Region 2 serves New Jersey, New York, Puerto Rico, the U.S. Virgin Islands, and eight tribal nations. Get more info on key issues and initiatives in USEPA Region 2.

 

 

Aquatic Organism Passage: A Princeton Hydro Blog Series

Introducing part one of a multi-part blog series about aquatic organism passage
What you’ll learn:
  • What is aquatic organism passage?
  • Why is it important?
  • How does Princeton Hydro support it?

This photo from NYS DEC demonstrates a well-designed stream crossing.

Since the US government began allotting funds for building roads in U.S. national forests in the late 1920s, hundreds of thousands of culverts were built across the country. Culverts, or drainage structures that convey water underneath a barrier such as a road or railroad, were originally built with the intention of moving water quickly and efficiently. While this goal was met, many migratory fish and other aquatic organisms could not overcome the culverts’ high-velocity flows, sending them away from their migratory destinations. If the culvert was perched, or elevated above the water surface, it would require the migratory aquatic animals to both leap upwards and fight the unnaturally fast stream current to continue their journeys. Additionally, turbulence, low flows, and debris challenged the movement of aquatic organisms.

Thus, the goal of aquatic organism passage (AOP) is to maintain connectivity by allowing aquatic organisms to migrate upstream or downstream under roads. AOP “has a profound influence on the movement, distribution and abundance of populations of aquatic species in rivers and streams”. These aforementioned species include “fish, aquatic reptiles and amphibians, and the insects that live in the stream bed and are the food source for fish”.

This photo from NYS DEC demonstrates a poorly-designed stream crossing.

A poorly designed culvert can harm fish populations in multiple ways. If sturgeon aren’t able to surpass it, habitat fragmentation prevails. And so, a once-connected habitat for thousands of sturgeon breaks into isolated areas where a few hundred now live. When the population was in the thousands, a disease that wiped out 80% of the population would still leave a viable number of individuals left to survive and mate; a population of a few hundred will be severely hurt by such an event. In sum, habitat fragmentation raises the risk of local extinction (extirpation) as well as extinction in general.

The splintering of a large population into several smaller ones can also leave species more vulnerable to invasive species. Generally, the greater the biodiversity harbored in a population, the stronger its response will be against a disturbance. A dwindling community of a few hundred herring will likely succumb to an invasive who preys on it while a larger, more robust community of a few thousand herring has a greater chance of containing some individuals who can outcompete the invasive.

Aquatic Organism Passage in Action at Princeton Hydro

Princeton Hydro recently teamed up with Trout Unlimited to reconnect streams within a prized central-Pennsylvanian trout fishery.  Our team enabled aquatic organism passage by replacing two culverts in Pennsylvania’s Cross Fork Creek. Read about it here!

Sources:

“Aquatic Organism Passage through Bridges and Culverts.” Flow. Vermont Department of Environmental Conservation’s Watershed Management Division, 31 Jan. 2014. Web. 14 Mar. 2017.

Hoffman, R.L., Dunham, J.B., and Hansen, B.P., eds., 2012, Aquatic organism passage at road-stream crossings— Synthesis and guidelines for effectiveness monitoring: US Geological Survey Open-File Report 2012-1090, 64p.

Jackson, S., 2003. “Design and Construction of Aquatic Organism Passage at Road-Stream Crossings: Ecological Considerations in the Design of River and Stream Crossings.” 20-29 International Conference of Ecology and Transportation, Lake Placid, New York.

Kilgore, Roger T., Bergendahl, Bart S., and Hotchkiss, Rollin H. Publication No. FHWAHIF-11-008 HEC-26. Culvert Design for Aquatic Organism Passage Hydraulic Engineering Circular Number 26. October 2010.

Princeton Hydro Projects Recap

In Case You Missed It:
A Recap of Projects Recently Completed by the
Princeton Hydro Aquatic & Engineering Departments

Members of our New England Regional Office team conducted a detailed survey at a culvert prioritized for replacement in the Town of Stony Point, New York. This structure was one of several identified as important to both habitat and flood risk during the development of Stony Point’s Road-Stream Crossing Management Plan. The Princeton Hydro team will use the collected data to develop a conceptual design and implementation strategy for a replacement structure using the Stream Simulation design method developed by the U.S. Forest Service.

Special thanks to Paul Woodworth, Fluvial Geomorphologist, and Sophie Breitbart, Staff Scientist, for their excellent work on this project!

The Truxor was put to work dredging a pond in Union Gap, New Jersey. The Truxor is an extremely versatile amphibious machine that can perform a variety of functions, including weed cutting and harvesting, mat algae and debris removal, silt pumping, channel excavation, oil spill clean-up, and much more!

We recently designed and installed a solar-powered aeration system in Hillsborough, New Jersey. Solar pond and lake aeration systems are cost-effective, eco-friendly, sustainable, and they eliminate the need to run direct-wired electrical lines to remote locations. Princeton Hydro designs, installs and maintains various aeration and sub-surface destratification systems for public drinking water purveyors, municipal and county parks, private and public golf courses, and large lake communities throughout the East Coast.

Here’s a look at a project in Elizabeth, New Jersey to clear the area of phragmites. Phragmites is an invasive weed that forms dense thickets of vegetation unsuitable for native fauna. It also outcompetes native vegetation and lowers local plant diversity. Previously, the entire site was filled with phragmites. Late last year, we utilized the Marsh Master to remove the invasive weed. Now that its almost Spring, we’re back at the site using the Marsh Master to mill and cultivate the ground in preparation for re-planting native plant species. A big shout out to our Aquatic Specialist John Eberly for his great work on this project!

In this photo, our intern and engineering student currently studying at Stevens Institute of Technology, Veronica Moditz, is gathering data on the Hughesville Dam removal. She’s using GPS to check the elevation of the constructed riffle on the beautiful Musconetcong River.

Members of the Princeton Hydro team worked in South New Jersey doing annual maintenance on nine stormwater infiltration basins that were also designed and constructed by Princeton Hydro. The maintenance work involves clearing vegetation from the basins to ensure the organic matter does not impede infiltration of the water as per the basins’ design. This project also involves the management of invasive plant species within the basins. Stormwater infiltration basins provide numerous benefits including preventing flooding and downstream erosion, improving water quality in adjacent waterbodies, reducing the volume of stormwater runoff, and increasing ground water recharge.

We recently completed a project in New Jersey for which we used our Truxor machine to dredge a stormwater retention basin. The basin had accumulated large amounts of sediment which were impeding the flow of water into the basin. We equipped the Truxor with its standard bucket attachment and a hydraulic dredge pump. The dredging operation was a success and now the basin is clear and functioning properly.

Stay Tuned for More Updates!

Tracking and Managing Harmful Algae Blooms

A Presentation by Princeton Hydro Founder Dr. Stephen Souza
Available for Free Download Here

The presentation covers all things related to identifying, addressing and preventing Harmful Algae Blooms (HABs), including:

  • Understanding what defines HABs, Cyanobacteria and Cyanotoxins
  • Dispelling common misconceptions about HABs
  • Educating on the health implications associated with HABs, specifically related to drinking water and recreational water usage
  • Learning about PARETM – Princeton Hydro’s unique strategy for addressing HABs
    • (P)redict – Forecasting a bloom
    • (A)nalyze – Measuring and quantifying a bloom
    • (R)eact – Implementing measures to prevent and control a bloom
    • (E)ducate – Providing community outreach and public education

To learn more about Princeton Hydro’s Invasive Weed and Algae Management Services, visit our website or contact us!

 

Lake Management and Restoration in the Hudson River Valley

Lake Management Planning in Action
at Sleepy Hollow Lake and Truesdale Lake

The Hudson River Valley encompasses 7,228 square miles along the eastern edge of New York State. It comprises 3 million residents, 133 communities and 553 significant freshwater lakes, ponds and reservoirs. Princeton Hydro has worked with municipalities and organizations in the Hudson River Valley for over 18 years actively restoring, protecting and managing waterbodies throughout the area.

Princeton Hydro is currently implementing customized Lake Management Plans at two waterbodies in the Hudson River Valley: Sleepy Hollow Lake, a 324-acre drinking water reservoir/recreational lake located in Green County, NY and Truesdale Lake, an 83-acre lake in Northern Westchester County, NY.

Sleepy Hollow Lake

Stretching over two and a half miles long and reaching depths of approximately 70 feet, Sleepy Hollow Lake is a NYSDEC Class “A” drinking water reservoir that provides potable water for the Sleepy Hollow community. The lake is also extensively used by residents for swimming, boating and water-skiing. And, it is recognized as an outstanding large-mouth bass and white crappie (current New York State record holder) fishery!

Princeton Hydro was hired by the Association of Property Owners (APO) at Sleepy Hollow Lake to develop a comprehensive lake management plan. The first step involved an in-depth analysis of the biological, chemical and physical attributes of the lake, with the goal being to generate a database that can be used to better understand the interactions defining the Sleepy Hollow Lake ecosystem.

The data collection and investigation phase includes:

  • Watershed Investigation: an in-depth assessment of the major and minor tributaries and road network in order to identify areas of stream bank and ditch erosion; sources of both sediment and nutrient loading to the lake
  • Bathymetric Survey: the accurate mapping of water depths and the quantification of the amount of accumulated, unconsolidated sediment present in the lake
  • Fisheries & Food Web Study: the collection of fish and plankton data for the purpose of creating a comprehensive fisheries management program focused on managing the lake’s outstanding fishery, further promoting the ecological balance of the lake, and enhancing lake water quality
  • Aquatic Plant Mapping: the development of detailed maps identifying the plant species present in the lake along with their relative abundance and distribution throughout the lake, but especially within the shallower coves
  • Hydrologic & Pollutant Budget: the computation of the lake’s hydrologic budget and pollutant loading budget. The hydrologic budget represents the water balance of the lake and is an estimate of all of the inputs and losses of water. The pollutant budget represents an estimate of the amount of nitrogen and phosphorus entering the lake from various sources. These data are used to evaluate the effectiveness of lake management options, enabling us to determine the best, most ecologically sound and most cost-effective approach to protect and improve the lake’s water quality now and into the future.

Princeton Hydro is now in the process of utilizing all of the data developed during the investigation phase of the project to create a comprehensive Lake Management Plan that will be used to guide the APO’s future lake restoration and protection initiatives. The Lake Management Plan and supporting data will also be used by Princeton Hydro on behalf of the APO to seek grant funding for various lake and watershed restoration projects.

Princeton Hydro is also overseeing the aquatic plant management program at Sleepy Hollow Lake, the focus of which is to control invasive plant species in a manner consistent with and complimentary of the lake’s overall ecological enhancement.

Truesdale Lake

At Truesdale Lake, Princeton Hydro is working with the Truesdale Lake Property Owners Association (TLPOA) to develop a comprehensive Lake Management Plan. The Plan provides a detailed project implementation roadmap for TLPOA, including recommendations for priority ranking of particular activities and restoration measures. A key element of the Plan are the short-term (1-year) and long-term (5-year) water quality and problematic algae and invasive aquatic plant control goals. Another highlight of the Plan is the review of Federal, State, County and local grants, programs and initiatives that may provide funding for identified lake and watershed projects.

During the Plan’s development, Princeton Hydro has provided the TLPOA with lake management consultation services such as community education initiatives, the coordination of NYSDEC permitting activities associated with the implementation of lake restoration measures, and the oversight and administration of an aquatic weed management program at the lake.

Earlier this year, Truesdale Lake experienced excessive aquatic weed growth, which significantly reduced the water quality, recreational use and aesthetics of the lake. Princeton Hydro utilized its Truxor, an eco-friendly, amphibious machine, to cut and remove the nuisance weed growth from the lake. This program helped reduce the negative impacts to the lake and lake users caused by the dense weed growth. Future use of the Truxor to remove invasive weeds is already part of the long-term Lake Management Plan for TLPOA. The Truxor will be used in concert with other measures to control invasive weed growth and restore a more balanced native aquatic plant community.

For more information about Princeton Hydro’s work in the Hudson River Valley or to discuss your project goals, please contact us.

Natural VS. Artificial Lakes

In addition to deep versus shallow, waterbodies can also be compared and contrasted as naturally occurring or as the result of an artificial impoundment or reservoir. While there are a wide variety of natural lakes -from the glacial lakes of northern regions, to oxbow lakes adjacent to rivers, to coastal lakes that can be connected to the ocean – most of these natural systems have a number of common characteristics. Some of these include variable nutrient and sediment loading (from low to high, depending on the nature of the watershed) and low to moderate watershed-to-lake area ratios. In addition, natural waterbodies tend to have distinct and sometimes extensive littoral zone fringe habitat along the shoreline. Littoral habitat is the interface between the land and the open waters of a lake. Typically, rooted aquatic macrophytes (plants and mat algae) are found in the littoral zone, along with a number of aquatic organisms that use this habitat for food and/or cover. Thus, the littoral zone of lake is frequently the most productive areas of this ecosystem.

Graphic adapted from www.cues.cfans_umin.edu

Graphic adapted from www.cues.cfans_umin.edu

In contrast, large artificial impoundments, frequently called reservoirs, are waterbodies typically created by placing a dam across a stream or river (see below). This often results in the triangular shape of a reservoir; the deepest portion is located just behind the dam. Unlike many natural lakes that have a number of small inlet or inflow streams, a reservoir typically has one main inflow, which is essentially the river or stream that was originally dammed. Traveling upgradient from the dam towards the main inlet, water depth will decline. Additionally, many reservoirs are a type of hybrid of natural lakes and rivers. The upgradient/inflow part of the reservoir functions more like a riverine system, while the main body of the reservoir near the dam functions more like a lake (see below).

Graphic adapted from Reservoir Limnology: Ecological Perspectives, edited by K.W. Thornton, B.L. Kimmel and F.E. Payne, 1990

Graphic adapted from Reservoir Limnology: Ecological Perspectives, edited by K.W. Thornton, B.L. Kimmel and F.E. Payne, 1990

Since reservoirs are essentially dammed rivers, they tend to have very large watershed-to -lake area ratios, which means they tend to experience substantially higher nutrient and sediment loads compared to natural lakes. Thus, the level of productivity (algae growth) in the open waters of a reservoir is substantially higher than those of a natural lake. This means reservoirs have the tendency to experience larger and more frequent algal blooms. High rates of sediment loads also means rates of sedimentation will be higher in reservoirs compared to natural lakes. Finally, since the water level of reservoirs are highly dependent on inflow from the main riverine source, as well as water withdrawals in the case in drinking water supplies, the establishment of a littoral zone in reservoirs tends to be very limited.

In summary, a reservoir of comparable size to a natural lake will typically have a higher level of algal productivity, higher rates of sedimentation, and a smaller amount of biological diversity (with the general absence of a littoral zone). Thus, water quality problems can be larger and more frequent in reservoirs when compared to many natural lakes. Since many reservoirs are vital sources of potable water for millions of people throughout the United States, the general management activities for a reservoir tends to be higher relative to many natural lakes.

Join us next time, when we will discuss lake and pond productivity, the role the watershed plays in productivity, and how this impacts their recreational, potable and ecological value.