September Events Spotlight: Webinars, Conferences & Film Festival

Princeton Hydro is proud to participate in a number of conferences, events, and webinars throughout September:

 

September 6 at 12 pm: “Social Media Hacks” Webinar for the Society for American Military Engineers (SAME) Young Member Council 

SAME Young Member Council is hosting a webinar that will offer solutions for boosting social media presence and increasing engagement. Designed for social media beginners and experts alike, the webinar titled, “Social Media Hacks,” will be presented by Dana Patterson, Communications Strategist for Princeton Hydro. Participants will learn about creating successful social media strategy, utilizing free social media management tools, tracking social media analytics, and executing high-quality posts on various social media platforms. The webinar is free for SAME Members and $25 for all non-members.

Learn more and register.

 

September 9: Wild & Scenic Film Festival On Tour

Hosted by Musconetcong Watershed Association, the “Wild & Scenic Film Festival On Tour” celebrates the 50th Anniversary of the Wild and Scenic Rivers Act by bringing communities together to screen films that call attention to local and global environmental issues. The Hackettstown, NJ tour event, which Princeton Hydro is a proud sponsor of, will feature 11 short films including River Connections, a film that explores the importance of free-flowing rivers and highlights the recent Hughesville Dam removal project. An interactive panel event will follow the film screening and feature experts including MWA Executive Director Alan Hunt, Ph.D. and Princeton Hydro President Geoffrey Goll, P.E., who were both interviewed in the film. This event is free and open to the public, but registration is required.

Learn more and register.

 

September 12: Schuylkill Action Network’s (SAN) Water Utility Forum

This year’s SAN Forum will cover a variety of water-quality related topics, including perfluorinated compound (PFCs) and upcoming drinking water regulations. The forum will provide a platform to collaborate and share information, expertise, and technology to help achieve a shared vision of clean water and a healthy environment for the Schuylkill River and its tributaries. A variety of presentations will be offered during the forum, including one by Dr. Fred Lubnow, Director of Aquatics Programs for Princeton Hydro, on the topic of Harmful Algal Blooms (HABs).

Learn more and register.

 

September 15: Mercer County Park Commission’s River Days

Join Mercer County Park Commission for “River Days,” a free, family-friendly event at the Tulpehaking Nature Center with trail activities, arts and crafts, a raffle, and a neighborhood cookout on the back lawn of the nature center. Check out the Princeton Hydro air boat and chat with our Aquatics Field Director about the upcoming multi-year restoration of freshwater tidal wetlands in John A. Roebling Memorial Park. The restoration project is a partnership between Mercer County, New Jersey, Mercer County Park Commission, and Princeton Hydro.

Learn more.

 

September 23-26: 91st Annual Water Works Operators’ Association of Pennsylvania (WWOAP) Conference

WWOAP is hosting its 91st annual conference, which offers a diverse collection of professional presentations, workshops, networking events and an exhibit hall. Princeton Hydro’s Director of Aquatics Programs  Dr. Fred Lubnow is presenting on “Managing HABs and Their Associated Cyanotoxins in Raw Water.” Other presentation topics include “What Might Climate Change Look Like in Pennsylvania,” “A Multi-Lateral Approach to Water Loss Reduction,” and “Achieving Water Quality Optimization.”

View the full conference program.

 

September 25: New England Interstate Water Pollution Control Commission (NEIWPCC) Research Webinar

NEIWPCC is offering a free research webinar on modeling and flood-mitigation recommendations for a forested and urban Hudson River tributary watershed. The webinar takes a look at the Moodna Creek Watershed and Flood Mitigation Assessment and describes how flood models were used to inform recommendations for reducing and mitigating existing and anticipated flood risk. The assessment was conducted by environmental consultants at Princeton Hydro and GreenVest, and funded by NEIWPCC through the New York Department of Environmental Conservation’s Hudson River Estuary Program. This free webinar will be presented by Christiana Pollack, GISP, CFM, Environmental Scientist & GIS Manager for Princeton Hydro, and Jessica Jahre, CFM, AICP.

Learn more and register.

 

September 28: Alliance for NJ Environmental Education (ANJEE) Autumn Conference

Duke Farms will host ANJEE’s Autumn Conference, titled “Imagine a World Outdoors.” The conference, which takes place completely outdoors and does not include a single PowerPoint presentation, invites environmental education professionals throughout New Jersey to come together to collaborate around innovative ideas, learn and disseminate best practices, and network. Participants will explore natural history with local experts in birding, animal tracking, and plant identifying and learn trade secrets from experienced outdoor teachers who will share their methods and techniques. Princeton Hydro’s Dana Patterson and Pinelands Adventures’ Danielle Odom are teaching a workshop on “How to Bring Out the Inner Bird Nerd in your Students. ANJEE hopes the event will inspire participants to become more informed and dedicated stewards of the land.

Learn more and register.

 

Stay tuned for more event updates!

Conservation Spotlight: Dunes at Shoal Harbor Shoreline Protection

Hurricane Sandy was the largest storm to ever originate in the Atlantic ocean. It badly damaged several countries in the Caribbean, caused over $50 billion in damages along the Eastern Seaboard, and left dozens dead. While hurricanes are a natural part of our climate system, research shows that intense hurricane activity has been on the rise in the North Atlantic since the 1970s. This trend is likely to be exacerbated by sea level rise and growing populations along coastlines. Natural coastal habitats — like wetlands and dunes — have proven to shield people from storms and sea-level rise, and have protected coastal communities from hundreds of millions of dollars in damage.

The Dunes at Shoal Harbor, a residential community in Monmouth County, New Jersey, is situated adjacent to both the Raritan Bay and the New York City Ferry channel. The site, previously utilized for industrial purposes, consisted of a partially demolished docking/berthing facility. A significantly undersized 6” diameter, 8-foot long stone revetment was also constructed on the property.

During Hurricane Sandy, the revetment failed and the community was subjected to direct wave attack and flooding. Homes were damaged, beach access was impaired, and the existing site-wide stormwater management basin and outfall was completely destroyed.

Princeton Hydro performed a wave attack analysis commensurate with a category three hurricane event, and used that data to complete a site design for shoreline protection. Consistent with the analysis, the site design includes the installation of a 15-foot rock revetment (one foot above the 100-year floodplain elevation) constructed with four-foot diameter boulders. The project also consists of replacing a failed elevated timber walkway with a concrete slab-on-grade walkway, restoring portions of the existing bulkhead, clearing invasive plants, and the complete restoration of the failed stormwater basin and outlet.

A rendering of the “Dunes at Shoal Harbor” shoreline protection design by Princeton Hydro.

The plan incorporates natural barriers to reduce the impacts of storm surges and protect the coastal community, including planting stabilizing coastal vegetation to prevent erosion and installing fencing along the dune to facilitate natural dune growth.

These measures will discourage future erosion of the shoreline, protect the residential community from future wave attacks and flooding, and create a stable habitat for native and migratory species.  The project is currently in the permitting phase, and will move to construction when all permits are obtained from local, state, and federal agencies.

This project is an great example of Princeton Hydro’s ability to coordinate multi-disciplinary projects in-house. Our Water Resources Engineering, Geosciences Engineering, and Natural Resources teams have collaborated efficiently to analyze, design, and permit this shoreline protection project. For more information on our engineering services, go here.

A Scientist’s Journey to the Antarctic: A Princeton Hydro Blog Series

This two-part blog series takes us on an adventure to the southernmost continent and explores how changes to Antarctica’s ecosystem have worldwide impacts.

Welcome to Part Two: The Continent of Science

Antarctica, the most remote and inaccessible continent in the world, is also, on average, the coldest, windiest and driest continent. Quick Fact: Antarctica is actually a desert! Additionally, with an average elevation of about 7,200 feet above sea level, it is also the world’s highest continent.

There are no native people in Antarctica, but scientists from all over the world visit the continent to conduct research. During the summer, approximately 4,000 scientists visit “the continent of science” to carry out research in a wide range of physical and biological sciences – from the vastness of space to the minutest scale of microorganisms. The research conducted here has helped to highlight global problems, including climate change.

Tourists also visit Antarctica during the summer to enjoy the spectacular scenery and abundant wildlife. In Part One of our two-part blog series, we take you on an Antarctic journey through Sophie Breitbart’s experience aboard the National Geographic Explorer ship. Sophie saw a variety of wildlife during her 10-day educational excursion, including Crabeater and Leopard seals, gentoo and Chinstrap Penguins, Humpback and Killer whales, migrating Red Knots, and more.

Polar tours like the National Geographic Lindblad Expedition help to raise climate change awareness and create lifelong wildlife ambassadors, and the profits from responsibly managed tourism help to fund critical scientific expeditions to the Antarctic.

Just last year, a research mission conducted by the National Oceanic and Atmospheric Administration discovered that sea ice cover in the Antarctic is near record lows – 18.2%, or 520,000 square miles, below the 1981-2010 average. That is the second lowest sea ice report since record-keeping began in 1979, with the first being recorded in 2016. Smaller ice shelves in the Antarctic Peninsula are currently retreating, breaking up into vast fields of icebergs, likely due to rising temperature and surface melting.

Snow and ice make up more than 95% of Antarctica’s surface terrain. The continental ice sheet contains approximately seven million cubic miles of ice, representing about 90% of the world’s total ice. The average thickness is about 1.5 miles. To understand its extent, if Antarctica’s ice were to melt today, global sea levels could rise 150 – 200 feet. It’s massive.

Climate change impacts are already being documented in Antarctica. The Antarctic Peninsula’s glaciers have been warming faster than the rest of the continent. As the snow and ice decrease, the land cover increases and absorbs more heat, which in turn increases the rate of warming. In 2017, a study published in Current Biology found that over last 50 years, temperatures have been rising, and therefore have caused a steady growth of moss on the continent.  So, scientists are now predicting that, “terrestrial ecosystems will alter rapidly under future warming, leading to major changes in the biology and landscape of this iconic region—an Antarctic greening to parallel well-established observations in the Arctic.”  And, another study by researcher Bill Fraser has reported that Adélie Penguin populations have decreased from 32,000 breeding pairs to 11,000 in 30 years because of the changes in temperature.

Changes to the global sea ice cover reported by NOAA not only carry major implications for the continent of Antarctica, but for the entire world. 97% of actively publishing climate scientists agree that earth’s climate is warming, and the evidence that the Arctic’s ice caps are melting at an accelerated rate due to climate change is blaring. And, more than 62% of Americans say they are at least “somewhat worried” about global warming. Yet, not many people are taking daily actions to slow global climate change.

We must make every effort we can to limit our own carbon footprint and mitigate climate change. It has been said that there are most likely no greater ambassadors for Antarctica than the tourists who have been there and return home to share information about the need for its protection.

When Sophie returned from her trip, she said “I became an environmental scientist because I have a passion to conserve biodiversity. Being immersed in this wild place and experiencing firsthand the magnificent yet fragile Antarctic landscape acts as a reminder of why it’s so important to do this work. Those memories inspire me to keep at it.”

To learn more about Antarctica and what scientists with World Wildlife Fund are doing to protect it, go here. If you have any questions for Sophie about her journey, please email us or comment below.

 

Sophie Breitbart worked for Princeton Hydro from March 2016 until May 2018, first as an intern and then as a staff scientist. She is now pursuing her PhD in Ecology and Evolutionary Biology at the University of Toronto, where she will study how urban development affects the ecology and evolution of interactions between the plant common milkweed, its herbivores, and pollinators.

 

A Scientist’s Journey to the Antarctic: A Princeton Hydro Blog Series

A trip to Antarctica has long been at the top of the bucket list for Sophie Breitbart, former Staff Scientist at Princeton Hydro, and her father. Ultimately inspired by the extraordinary spirit of adventure in “South: The Endurance Expedition,” the story of British explorer Ernest Shackleton‘s 1914 attempt to reach the South Pole, the two decided that it was time to make the journey to the white continent. What they experienced was far more than a travel dream fulfilled.

This two-part blog series takes us on an adventure to the southernmost continent and explores how changes to Antarctica’s ecosystem have worldwide impacts.

Part One: Antarctic Adventure

The National Geographic Lindblad Expedition trip began with a flight to Buenos Aires, Argentina, where Sophie and her father met up with the other travelers and an expedition crew that consisted of an exploration leader, eight veteran naturalists, a National Geographic photographer, a Lindblad-National Geographic certified photo instructor, an undersea specialist, a Global Perspectives guest speaker, and a video chronicler.

Ushuaia, Argentina

In Buenos Aires, the group, totaling approximately 140 people, boarded a private charter flight to Ushuaia, Argentina, the world’s southernmost city. After taking in views of the Martial Mountains and the Beagle Channel, which is commonly referred to as The End of the World, the group climbed aboard the National Geographic Explorer ship and set sail for a 10-day Antarctic adventure.

The National Geographic Explorer is a 367-foot expedition ship that accommodates 148 guests in 81 cabins. The Explorer is uniquely equipped with an ice-strengthened hull, advanced navigation equipment, a variety of exploration tools, and vast expanses of windows that provided the ultimate vantage point for spotting dolphins and sea birds as the ship left the Beagle Channel.

Before reaching the Antarctic, the ship would have to pass through the infamous Drake Passage, the body of water between Cape Horn in South America and the South Shetland Islands in Antarctica, where the Atlantic, Pacific, and Southern seas converge. Because the currents in the Passage meet no resistance from any nearby landmass, they can be some of the choppiest waters in the world. Luckily for Sophie and the other Explorer travelers, the Drake Passage was cooperative for the most part and the journey through it was relatively smooth. (Editor’s Note: The journey back was another story.)

On day five of the journey, the ship arrived in the Antarctic Peninsula.

“The ice was so shocking and jaw-dropping,” said Sophie reflecting on her first impression of Antarctica. “I had never seen anything like it before. There were so many different shades of blues and whites and countless textures. It was truly incredible to see.”

With close to 24 hours of daylight, the exploration opportunities were endless. Sophie and her father participated in kayaking tours, expeditions on an 8-person zodiac boat, around the clock wildlife watching, and even a few hikes on the Antarctic Peninsula. There they saw indigenous rocks and artifacts, remnants of British research stations from the 1950s, and lots of wildlife, including nesting South Polar Skua Birds, penguins swimming and jumping out of the water, and a playful group of Leopard Seals.

Humpback and Killer whales skirted the ship as well. A Killer Whale research team aboard the Explorer took blow samples, which would be genetically sequenced, and shared  with passengers their aerial imagery findings, which they captured in order to record the whales’ dimensions, family structures, and health. Sophie and her father enjoyed a variety of whale sightings. During one of their kayaking expeditions, a large Humpback Whale surfaced just 10 feet away from them, then swam right underneath the kayaks and resurfaced, showing lots of playfulness and curiosity.

Check out this incredible video showing a fascinating strategy that killer whales use to hunt seals:

While Sophie struggled to choose a favorite moment from the trip, she quickly recalled the memory of kayaking along the coast of the Antarctic Peninsula among a field of stunning icebergs. “They each possess a unique mixture of color, density, shape, and size… like pieces of artwork, truly breathtaking in their composition and enormity.” Another easy highlight: “One day, the captain lodged our ship into an ice floe and we had a cookout complete with BBQ and lawn chairs. Definitely a once-in-a-lifetime experience.”

Sophie described this journey as the “most amazing scientific field trip” she’s ever been on. It left her feeling inspired to continue her work as an environmental scientist and acted as a reminder about why it’s so important to continue to be involved with projects that conserve biodiversity and protect water resources.

Check out Part Two of this Princeton Hydro blog series.

 

Sophie Breitbart worked for Princeton Hydro from March 2016 until May 2018, first as an intern and then as a staff scientist. She is now pursuing her PhD in Ecology and Evolutionary Biology at the University of Toronto, where she will study how urban development affects the ecology and evolution of interactions between the plant common milkweed, its herbivores, and pollinators.

Upcoming Environmental Education Opportunities

Throughout May and June, Princeton Hydro is participating in a variety of events focused on conserving, restoring, and protecting our precious water resources.

May 7 – May 11: NJWEA 103rd John J. Lagrosa Conference & Exposition

The New Jersey Water Environment Association Conference is the largest water-focused environment exposition in the Northeast drawing participants from throughout the country for four days of workshops, educational sessions, networking events, exhibitor booths and more.

Princeton Hydro Founder Dr. Stephen Souza is giving a presentation on ”Increased Storm Resiliency through the Application of Green Infrastructure BMPs.”

See the conference program.

May 18: Restoration Ecology One-Day Course

This Rutgers Office of Continuing Professional Education course, led by Dr. Stephen Souza, explores the use of mitigation and sustainable design techniques to reduce stormwater impacts and increase storm resiliency.

Designed for those involved in the recovery of impacted river, lake, riparian, wetland and coastal environments, the course will draw heavily upon real-world examples of restoration ecology in practice, and will cover topics, including green infrastructure stormwater techniques; FEMA’s national flood insurance program community rating system (the course is approved for certified Floodplain Manager credits); reconnecting streams to their floodplains; stream daylighting; and more. The course will take place at Duke Farms.

Get more info and register.

June 4 – 6: Association of State Dam Safety Officials Northeast Regional Conference

The conference program will focus on issues of importance to dam owners, government officials and engineers in the northeast region with applicability to the greater dam and levee safety community as well.  Both general and concurrent technical sessions, timely panel discussions, an informative exhibit show, and networking opportunities with colleagues from across the region highlight this event.

Princeton Hydro is giving two presentations:

Get more info and register.

June 6: Camden Environmental Summit

The Camden Environmental Summit provides an opportunity for community groups, nonprofit organizations, environmental leaders, and government officials to come together to explore equitable and creative solutions to climate change in the Camden region. Educational breakout sessions include topics like stormwater management, climate resilience, brownfields redevelopment, illegal dumping and improving the overall health of the watershed.

Get more info and register.

June 8: Sustainable Raritan River Summit

The 10th Annual Sustainable Raritan River Conference and Awards Ceremony is titled “Micro to Macro: The Future of the Raritan.” Conference participants will explore emerging contaminants affecting the Raritan and discuss watershed planning efforts that address threats to achieving a fishable and swimmable status for the Raritan River, basin and bay.

The annual conference typically draws 200+ attendees from state, local and federal government, non-profit organizations, businesses, philanthropic organizations, academia, and individuals committed to a more sustainable Raritan.

Get more info and register.

 

Stay tuned for more!

Understanding and Addressing Invasive Species

Photo from: New York State Department of Environmental Conservation, water chestnut bed at Beacon

Spring is officially here! Tulips will soon be emerging from the ground, buds blossoming on trees and, unfortunately, invasive plant species will begin their annual growing cycle. No type of habitat or region of the globe is immune to the threat of invasive species (“invasives”). Invasives create major impacts on ecosystems throughout the world, and freshwater ecosystems and estuaries are especially vulnerable because the establishment of such species in these habitats is difficult to contain and reverse.

This blog provides an introduction to invasive aquatic species, including information that will help you prevent the spread of invasives in the waterways of your community.

Defining Invasive Species

Invasive species can be defined as non-native occurring in an ecosystem that is outside its actual natural or native distributional range. Although the colonization of an ecosystem by non-native species can occur naturally, it is more often a function of human intervention, both deliberate and accidental. For aquatic ecosystems some species have become established as a result of the aquarium trade, fish culture practices and/or transport of plants and animals in the bilge and ballast water of trans-oceanic shipping vessels.

One of the primary reasons invasives are able to thrive, spread rapidly, and outcompete native species is that the environmental checks and predators that control these species in their natural settings are lacking in the ecosystems and habitat in which they become introduced. The subsequent damages they cause occur on many ecological levels including competition for food or habitat (feeding, refuge and/or spawning), direct predation and consumption of native species, introduction of disease or parasites, and other forms of disruption that lead to the replacement of the native species with the invasive species. As a result, invasives very often cause serious harm to the environment, the economy, and even human health. A prominent example is the Emerald Ash Borer, a non-native, invasive beetle that is responsible for the widespread death of ash trees.

As noted above, there are a large number of aquatic invasive species. Some of the more commonly occurring non-native aquatic plant species that impact East Coast lakes, ponds and reservoirs include:

Understanding How Invasives Spread

Either intentionally or unintentionally, people have helped spread invasives around the globe. This is not a recent phenomenon but rather something that has been occurring for centuries. “Intentional introductions,” the deliberate transfer of nuisance species into a new environment, can involve a person pouring their home aquarium into a lake or deliberate actions intended to improve the conditions for various human activities, for example, in agriculture, or to achieve aesthetics not naturally available.

Photo by: Tom Britt/CC Flickr, zebra Mussels adhered to a boat propeller“Unintentional introductions” involve the accidental transfer of invasives, which can happen in many ways, including aquatic species attached to the hull of boats or contained in bilge and ballast water. A high-profile example is the introduction of zebra mussels to North America. Native to Central Asia and parts of Europe, zebra mussels accidentally arrived in the Great Lakes and Hudson River via cargo ships traveling between the regions. The occurrence, density, and distribution of Zebra mussels occurred at an alarming rate, with the species spreading to 20 states in the United States and to Ontario and Quebec in Canada. Due to their reproductive fecundity and filter-feeding ability, they are considered the most devastating aquatic invasive species to invade North American fresh waters. They alter and diminish the plankton communities of the lakes that they colonize leading to a number of cascading trophic impacts that have especially negative consequences on fisheries. Zebra mussel infestations have also been linked to increased cyanobacteria (bluegreen algae) blooms and the occurrence of harmful algae blooms (HABs) that impact drinking water quality, recreational use, and the health of humans, pets, and livestock.

Additionally, higher than average temperatures and changes in rain and snow patterns caused by climate change further enable some invasive plant species to move into new areas. This is exemplified by the increased northly spread of hydrilla (Hydrilla verticillate), a tropical invasive plant species that has migrated since its introduction in Florida in the 1950s to lakes, rivers, and reservoirs throughout the U.S.

Regardless of how any of these invasive species first became established, the thousands of terrestrial and aquatic invasive species introduced into the U.S. have caused major ecological, recreational and economic impacts.

Measuring the Impacts of Invasives

After habitat loss, invasive, non-native species are the second largest threat to biodiversity. According to The Nature Conservancy, “Invasive species have contributed directly to the decline of 42% of the threatened and endangered species in the United States. The annual cost to the nation’s economy is estimated at $120 billion a year, with over 100 million acres (an area roughly the size of California) suffering from invasive plant infestations. Invasive species are a global problem — with the annual cost of impacts and control efforts equaling 5% of the world’s economy.”

Of the $120 billion, about $100 million per year is spent on aquatic invasive plant control to address such deleterious issues as:

  • Human health (West Nile Virus, Zika Virus)
  • Water quality impacts (Canada geese)
  • Potable water supplies (Zebra mussel)
  • Commercial fisheries (Snake head, lamprey, Eurasian ruffe, round goby)
  • Recreational activities (Eurasian watermilfoil, water chestnut, hydrilla)
  • Biodiversity (Purple loosestrife, common reed, Japanese knotweed)

Invasive species can change the food web in an ecosystem by destroying or replacing native food sources. As the National Wildlife Federation explains, “The invasive species may provide little to no food value for native wildlife. Invasive species can also alter the abundance or diversity of species that are important habitat for native wildlife. Additionally, some invasive species are capable of changing the conditions in an ecosystem, such as changing soil chemistry…”

Addressing Invasives

Our native biodiversity is an irreplaceable and valuable treasure. Through a combination of prevention, early detection, eradication, restoration, research and outreach, we can help protect our native heritage from damage by invasive species.

What Can We Do?

  • Reduce the spread
  • Routinely monitor
  • Document and report
  • Spread the word

Reducing the Spread:
The best way to fight invasive species is to prevent them from occurring in the first place. There are a variety of simple things each of us can do to help stop the introduction and spread of invasives.

  • Plant native plants on your property and remove any invasive plants. Before you plant anything, verify with your local nursery and check out this online resource for help in identifying invasive plants.
  • Thoroughly wash your gear and watercraft before and after your trip. Invasives come in many forms – plants, fungi and animals – and even those of microscopic size can cause major damage.
  • Don’t release aquarium fish and plants, live bait or other exotic animals into the wild. If you plan to own an exotic pet, do your research to make sure you can commit to looking after it. Look into alternatives to live bait.

Monitoring:
The Lake Hopatcong Foundation Water Chestnut prevention brochureInvasive plant monitoring is one of the most valuable site­-level activities people can support. Contact your local watershed organizations to inquire about watershed monitoring volunteer opportunities. For example, the Lake Hopatcong “Water Scouts” program was established to seek out and remove any instances of the invasive water chestnut species.

If you are a lake or watershed manager, the best way to begin an invasive plant monitoring project is with an expert invasive plant survey to determine which invasives are most likely to be problematic in your watershed and identify the watershed’s most vulnerable areas. Contact us to learn more.

 

Documenting and Reporting:
It’s important to learn to identify invasive species in your area and report any sightings to your county extension agent or local land manager. For example, in New Jersey there is the Invasive Species Strike Team that tracks the spread of terrestrial and aquatic invasives and works with local communities in the management of these species. Additionally, consider developing a stewardship plan for your community to help preserve its natural resources. Princeton Hydro’s team of natural resource scientists can help you get the ball rolling by preparing stewardship plans focused on controlling invasive species and protecting the long-term health of open spaces, forests habitats, wetlands, and water-quality in your community.

Spreading the word:
Many people still don’t understand the serious implications of invasive species. Education is a crucial step in stopping the spread of invasives, which is why it’s so important to talk with your neighbors, friends and family about the hazards and ecological/economic impacts of invasive species.

Also consider talking with your community lake or watershed manager about hosting an educational workshop where experts can share their knowledge about invasives specific to your area and how best to address them. Princeton Hydro’s Director of Aquatic Programs Dr. Fred Lubnow recently gave a presentation to the Lake Hopatcong Foundation titled, “Invasive Species in Watershed Management.” View it here.

 

We encourage you to share this article and spread your invasive species knowledge so that together we can help stop the introduction and spread of invasive species.

Conservation Spotlight: FORTESCUE SALT MARSH AND AVALON TIDAL MARSH RESTORATION

HABITAT RESTORATION THROUGH APPLICATION OF DREDGED MATERIAL

New Jersey, like other coastal states, has been losing coastal wetland habitats to a combination of subsidence, erosion and sea level rise. The New Jersey Department of Environmental Protection received a grant from the National Fish and Wildlife Federation to address this issue and rejuvenate these critical habitats. Grantees were charged with providing increased resilience to natural infrastructure that will in turn increase the resiliency of coastal communities in the face of future storms like Hurricane Sandy.

As a consultant for GreenTrust Alliance, a land conservancy holding company, Princeton Hydro worked with several project partners, including NJDEP, the US Army Corps of Engineers, NJDOT, The Wetlands Institute, and The Nature Conservancy, to increase the marsh elevation to an optimal range where vegetation, and the wildlife that depends on it, can flourish. One of the techniques used for this project included the use of dredged material disposal placement, which involves using recycled sand and salt dredged from navigation channels to boost the elevation of the degraded marsh.

A media statement from NJDEP further explained the process, “sediments dredged from navigation channels and other areas are pumped onto eroding wetlands to raise their elevations enough to allow native marsh grasses to flourish or to create nesting habitats needed by some rare wildlife species. Healthy marshes with thick mats of native grasses can cushion the impact of storm surges, thereby reducing property damage.”

FORTESCUE SALT MARSH

The salt marsh at the Fortescue project site is part of the Fortescue Wildlife Management Area. The specific goal of the project was to restore and enhance the interior high and low marsh, coastal dune and beach habitats.

To achieve these habitat enhancements, the Princeton Hydro project team first established biological benchmarks of each targeted habitat type and evaluated them to determine the upper and lower elevational tolerances for target communities and plant species. Approximately 33,300 cubic yards of dredged materials were used to restore a degraded salt marsh, restore an eroded dune, and replenish Fortescue Beach. The eroded dune was replaced with a dune designed to meet target flood elevations and protect the marsh behind it against future damage. The dune was constructed using dredged sand, and, to prevent sediment from entering the waterways, a Filtrexx containment material was used.

AVALON TIDAL MARSH

This project site is a tidal marsh complex located within a back-bay estuary proximal to Stone Harbor and Avalon. Princeton Hydro and project partners aimed to enhance the marsh in order to achieve the primary goal of restoring the natural function of the tidal marsh complex.

Two main activities were conducted in order to apply the dredged material to the impaired marsh plain: 1.) the placement of a thin layer of material over targeted areas of existing salt marsh to increase marsh elevations, 2.) the concentrated placement of material to fill expanding pools by elevating the substrate to the same elevation as the adjacent marsh. In total, dredged material was distributed among eight distinct placement areas throughout the property’s 51.2 acres.

These coastal wetland restoration activities will help to prevent the subsidence-based marsh loss by filling isolated pockets of open water and increasing marsh platform elevation. In addition, the beneficial reuse of dredged material facilitates routine and post-storm dredging and improves the navigability of waterways throughout the U.S.

Improving Water Quality & Reducing Habitat Loss with Floating Wetland Islands

Floating Wetland Islands (FWI), also known as floating treatment wetlands, are an effective alternative to large, watershed-based, natural wetlands. Often described as self-sustaining, FWIs provide numerous ecological benefits. They assimilate and remove excess nutrients that could fuel algae growth; provide habitat for fish and other aquatic organisms; help mitigate wave and wind erosion impacts; provide an aesthetic element; and can be part of a holistic lake/pond management strategy. FWIs are also highly adaptable and can be sized, configured and planted to fit the needs of nearly any lakepond or reservoir.

Princeton Hydro Senior Scientist Katie Walston recently completed the Floating Island International (FII) Floating Wetland Master Seminar. The seminar provided participants with an in-depth look at the various technologies and products FII offers. Through hands-on examples, course participants learned how to utilize wetland islands for fisheries enhancement, stormwater management, shoreline preservation, wastewater treatment and more.

“The Master Seminar was truly valuable both personally and professionally,” said Katie. “I learned a tremendous amount and thoroughly enjoyed the experience. It’s very fulfilling knowing that I can take the knowledge I’ve learned back to Princeton Hydro and make positive impacts for our clients.”

FII was launched by inventor and outdoorsman Bruce Kania who was driven by the desire to reverse the decline of wetland habitats by developing a new and natural stewardship tool that could clean water and, in the process, improve life for all living creatures. He found that the answer lies in Biomimicry: duplicating nature’s processes in a sustainable, efficient and powerful way to achieve impeccable environmental stewardship for the benefit of all life.

Bruce brought together a team of engineers and plant specialists and created BioHaven® floating islands. These islands biomimic natural floating islands to create a “concentrated” wetland effect. Independent laboratory tests show removal rates far in excess of previously published data: 20 times more nitrate, 10 times more phosphate and 11 times more ammonia, using unplanted islands. They are also extremely effective at reducing total suspended solids and dissolved organic carbon in waterways.

Due to population growth, industrialization and climate change, wetlands are at risk of rapidly declining in quantity and quality due. However, every floating wetland island launched by FII provides an effective strategy for mitigating and adapting to the impacts of over development and climate change.

The unique design of BioHaven® floating islands means that 250 square feet of island translates to an acre’s worth of wetland surface area. These versatile floating islands can be launched in either shallow or deep water, and can be securely anchored or tethered to ensure that they remain in a specific location. They are almost infinitely customizable, and can be configured in a variety of ways.

In addition to ongoing prototype development, FII offers licensing opportunities to businesses and production facilities worldwide. FII continues to research and develop collaborative pilot projects to quantify BioHaven® floating islands’ efficacy.

Many thanks to Bruce and Anne Kania for hosting the Floating Wetland Master Seminar and inspiring action through their knowledge, passion and ongoing endeavors.

 

NJ Audubon undertakes $470G study of climate change impact on wetlands

Princeton Hydro is proud to be a partner on this incredible project

If you’ve ever gone birdwatching at any east coast wildlife refuge, then you probably understand the value of coastal impoundments. These man-made wetland habitats are contained by embankments and have gates that allow managers to manipulate water levels. In addition to being valuable, these structures are also very vulnerable to sea level rise and extreme weather.

Through a $470,000 federal grant, the New Jersey Audubon is implementing an initiative to study the vulnerability of these impoundments to climate change induced environmental impacts. Funded by the U.S. Department of the Interior via the National Fish and Wildlife Foundation, the Coastal Impoundment Vulnerability and Resilience Project (CIVRP) aims to map and catalog all state, federal, and privately owned coastal impoundments from Virginia to Maine. The project is a cooperative effort of a diverse team of partners including researchers from New Jersey Audubon, National Wildlife Federation, Conservation Management Institute (Virginia Tech), U.S. Fish and Wildlife Service and Princeton Hydro.

The CIVRP will ultimately reduce climate vulnerability and enhance the natural ecosystem function of these precious and treasured wetland habitats. Read the full article from MyCentralJersey.

Princeton Hydro specializes in the restoration, creation and enhancement of tidal and freshwater wetlands. Contact us to learn more, and read about some of our award-winning wetland-related projects here.

Four Ways Climate Change Could Affect Your Lake

The Local Effects of Climate Change Observed Through our Community Lakes

Climate change is an enormous concept that can be hard to wrap your head around. It comes in the form of melting ice caps, stronger storms and more extreme seasonal temperatures. If you’re an avid angler, photographer, swimmer, boater or nature enthusiast, it’s likely that because of climate change you’ll bear witness to astonishing shifts in nature throughout the greater portion of your lifetime. This is especially true with respect to lakes.

2015-07-07-10-01-20Lakes are living laboratories through which we can observe the local effects of climate change in our own communities. Lake ecosystems are defined by a combination of various abiotic and biotic factors. Changes in hydrology, water chemistry, biology or physical properties of a lake can have cascading consequences that may rapidly alter the overall properties of a lake. Most of the time the results are negative and the impacts severe. Recognizing and monitoring the changes that are taking place locally brings the problems of climate change closer to home, which can help raise awareness and inspire environmentally-minded action.

Princeton Hydro has put together a list of four inter-related, climate change induced environmental impacts that can affect lakes and lake communities:

1. Higher temperatures = shifts in flora and fauna populations

The survival of many lake organisms is dependent on the existence of set temperature ranges and ample oxygen levels. The amount of dissolved oxygen (DO) present in a lake is a result of oxygen diffusion from the atmosphere and its production by algae and aquatic plants via photosynthesis. An inverse relationship exists between water temperature and DO concentrations. Due to the physical properties of water, warmer water holds less DO than cooler water.

This is not good news for many flora and fauna, such as fish that can only survive and reproduce in waters of specific temperatures and DO levels. Lower oxygen levels can reduce their ability to feed, spawn and survive. Populations of cold water fishes, such as brown trout and salmon, will be jeopardized by climate change (Kernan, 2015).

358-001-carp-from-churchvilleAlso consider the effects of changing DO levels on fishes that can tolerate these challenging conditions. They will thrive where others struggle, taking advantage of their superior fitness by expanding their area of colonization, increasing population size, and/or becoming a more dominant species in the ecosystem. A big fish in a little pond, you might say. Carp is a common example of a thermo-tolerant fish that can quickly colonize and dominate a lake’s fishery, in the process causing tremendous ecological impact (Kernan, 2010).

2. Less water availability = increased salinity

Just as fish and other aquatic organisms require specific ranges of temperature and dissolved oxygen to exist, they must also live in waters of specific salinity. Droughts are occurring worldwide in greater frequency and intensity. The lack of rain reduces inflow and higher temperatures promote increased evaporation. Diminishing inflow and dropping lake levels are affecting some lakes by concentrating dissolved minerals and increasing their salinity.

Studies of zooplankton, crustaceans and benthic insects have provided evidence of the consequences of elevated salinity levels on organismal health, reproduction and mortality (Hall and Burns, 2002; Herbst, 2013; Schallenberg et al., 2003). While salinity is not directly related to the fitness or survival rate of all aquatic organisms, an increase in salinity does tend to be stressful for many.

3. Nutrient concentrations = increased frequency of harmful algal blooms

Phosphorus is a major nutrient in determining lake health. Too little phosphorus can restrict biological growth, whereas an excess can promote unbounded proliferation of algae and aquatic plants.

before_strawbridgelake2If lake or pond water becomes anoxic at the sediment-water interface (meaning the water has very low or completely zero DO), phosphorus will be released from the sediment. Also some invasive plant species can actually “pump” phosphorus from the sediments and release this excess into the water column (termed luxurious uptake). This internally released and recycled sedimentary phosphorus can greatly influence lake productivity and increase the frequency, magnitude and duration of algae blooms. Rising water temperatures, declining DO and the proliferation of invasive plants are all outcomes of climate change and can lead to increases in a lake’s phosphorus concentrations and the subsequent growth and development of algae and aquatic plants.

Rising water temperatures significantly facilitate and support the development of cyanobacteria (bluegreen algae) blooms. These blooms are also fueled by increasing internal and external phosphorus loading. At very high densities, cyanobacteria may attain harmful algae bloom (HAB) proportions. Elevated concentrations of cyanotoxins may then be produced, and these compounds seriously impact the health of humans, pets and livestock.

rain-garden-imagePhosphorus loading in our local waterways also comes from nonpoint sources, especially stormwater runoff. Climate change is recognized to increase the frequency and magnitude of storm events. Larger storms intensify the mobilization and transport of pollutants from the watershed’s surrounding lakes, thus leading to an increase in nonpoint source loading. Additionally, larger storms cause erosion and instability of streams, again adding to the influx of more phosphorus to our lakes. Shifts in our regular behaviors with regards to fertilizer usage, gardening practices and community clean-ups, as well as the implementation of green-infrastructure stormwater management measures can help decrease storm-related phosphorus loading and lessen the occurrence of HABs.

4. Cumulative effects = invasive species

A lake ecosystem stressed by agents such as disturbance or eutrophication can be even more susceptible to invasive species colonization, a concept coined “invasibility” (Kernan, 2015).

For example, imagine that cold water fish species A has experienced a 50% population decrease as a result of warming water temperatures over ten years. Consequently, the fish’s main prey, species B, has also undergone rapid changes in its population structure. Inversely, it has boomed without its major predator to keep it in check. Following this pattern, the next species level down – species B’s prey, species C – has decreased in population due to intense predation by species B, and so on. Although the ecosystem can potentially achieve equilibrium, it remains in a very unstable and ecologically stressful state for a prolonged period of time. This leads to major changes in the biotic assemblage of the lake and trickle-down changes that affect its recreational use, water quality and aesthetics.

• • •

Although your favorite lake may not experience all or some of these challenges, it is crucial to be aware of the many ways that climate change impacts the Earth. We can’t foresee exactly how much will change, but we can prepare ourselves to adapt to and aid our planet. How to start? Get directly involved in the management of your lake and pond. Decrease nutrient loading and conserve water. Act locally, but think globally. Get out and spread enthusiasm for appreciating and protecting lake ecosystems. Also, check out these tips for improving your lake’s water quality.


References

  1. Hall, Catherine J., and Carolyn W. Burns. “Mortality and Growth Responses of Daphnia Carinata to Increases in Temperature and Salinity.” Freshwater Biology 47.3 (2002): 451-58. Wiley. Web. 17 Oct. 2016.
  1. Herbst, David B. “Defining Salinity Limits on the Survival and Growth of Benthic Insects for the Conservation Management of Saline Walker Lake, Nevada, USA.” Journal of Insect Conservation 17.5 (2013): 877-83. 23 Apr. 2013. Web. 17 Oct. 2016.
  1. Kernan, M. “Climate Change and the Impact of Invasive Species on Aquatic Ecosystems.” Aquatic Ecosystem Health & Management (2015): 321-33. Taylor & Francis Online. Web. 17 Oct. 2016.
  1. Kernan, M. R., R. W. Battarbee, and Brian Moss. “Interaction of Climate Change and Eutrophication.” Climate Change Impacts on Freshwater Ecosystems. 1st ed. Chichester, West Sussex, UK: Wiley-Blackwell, 2010. 119-51. ResearchGate. Web. 17 Oct. 2016.
  1. Schallenberg, Marc, Catherine J. Hall, and Carolyn W. Burns. “Consequences of Climate-induced Salinity Increases on Zooplankton Abundance and Diversity in Coastal Lakes”Marine Ecology Progress Series 251 (2003): 181-89. Inter-Research Science Center. Inter-Research. Web. 17