Dam Removal Underway in Watertown, Connecticut

Deconstruction of the Heminway Pond Dam, Watertown, CT on July 16, 2018.

As dams age and decay, they can become public safety hazards, presenting a failure risk and flooding danger. According to American Rivers, “more than 90,000 dams in the country are no longer serving the purpose that they were built to provide decades or centuries ago.” Dam removal has increasingly become the best option for property owners who can no longer afford the rising cost of maintenance and repair work required to maintain these complex structures.

Dams can also cause environmental issues such as blocking the movement of fish and other aquatic species, inundating river habitat, impairing water quality, and altering the flow necessary to sustain river life. Removing nonfunctional, outdated dams can bring a river back to its natural state and significantly increase biodiversity for the surrounding watershed.

A view from the site of the Heminway Pond Dam removal on July 19, 2018.

Currently, work is underway in Watertown, Connecticut to remove the Heminway Pond Dam, which restricts fish passage in Steele Brook, creates a pond with increased water temperatures and high bacterial levels due to high geese populations, and encourages deposition of iron precipitate in the stream channel just downstream of the dam.

Princeton Hydro designed the engineering plans, managed permitting and is now overseeing construction for the removal project. The removal of the Heminway Pond Dam is identified as an integral component in addressing water quality impairment between the dam and Echo Lake Road.

CT DEEP recently published this piece encapsulating the Heminway Pond Dam removal project:

REMOVAL OF HEMINWAY POND DAM ON STEELE BROOK IN WATERTOWN UNDERWAY

Upstream at rock-filled breach in Heminway Pond Dam and shallow, dewatered impoundment on Steele Brook in Watertown (7-18-18)

After almost 15 years of discussion and planning with the Town of Watertown and other partners, removal of Heminway Pond Dam on Steele Brook in Watertown finally got underway in early July.  Though no longer functional, the dam and pond were originally constructed to supply water for a former thread/string mill.  The Town acquired the dam and pond from the Siemon Company, the most recent owner, in 2007 with an eye towards removing the dam, restoring the river and converting the dewatered impoundment area into a passive recreation area, including an extension of the Steele Brook Greenway.  With these goals in mind, the Town approached CT DEEP for help with removal of the dam.

As it turns out, CT DEEP, has also had a strong interest in seeing this dam removed.  It is anticipated that dam removal will improve the hydrology in this section of Steele Brook and eliminate a water quality impairment which manifests itself during hot weather and low flow conditions, as an orange-colored plume of water (due to iron precipitate) immediately downstream of the dam that impacts aquatic life.  Dam removal would also benefit fisheries by restoring stream connectivity and habitat.

Working towards these mutual goals, CT DEEP was able to provide federal CWA 319 nonpoint source grant funding to USDA NRCS to develop a watershed-based plan for Steele Brook to address nonpoint source impairments that includes a dam removal feasibility analysis for Heminway Pond Dam.  Based on the recommendations in this plan, CT DEEP subsequently provided additional 319 grant funds to the Town of Watertown to hire a consultant to develop a dam removal design package, and assist with permitting and preparation.

With the Town of Watertown as a strong and vested partner, CT DEEP is now helping this project over the finish line by providing a combination of 319 and SEP funds to accomplish the actual dam removal and restoration of Steele Brook.  Dayton Construction Company is performing the construction and Princeton Hydro is the consultant overseeing the project on behalf of the Town.  The Northwest Conservation District is also assisting with the project.  It is anticipated that the majority of the work will be completed by this Fall.  U.S. EPA, ACOE and CT DEEP have all played active roles with regard to permitting the project.

 

A view of the first notch during the Heminway Pond Dam removal on July 17, 2018.

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of dozens of small and large dams in the Northeast. Click here to read about a recent dam removal project the firm completed on the Moosup River. And, to learn more about our dam and barrier engineering services, visit: bit.ly/DamBarrier.

Conservation Spotlight: Restoring Fish Passage on the Noroton River

For thousands of years, river herring swam from the Atlantic Ocean through the Long Island Sound and up the Noroton River to spawn each spring. Then, they returned to the ocean until the next spawning season.

Back in the 1920s, President Dwight D. Eisenhower’s administration began connecting the country through a massive interstate highway system. As part of the infrastructure plan, hundreds of thousands of culverts were built across the U.S. with the intention of moving water quickly and efficiently. While that goal was met, many migratory fish and other aquatic organisms could not overcome the culverts’ high-velocity flows, shallow water depths, and perched outlets. This infrastructure prevented them from reaching their native migratory destinations.

By the late 1950s, Interstate 95 cut through Connecticut’s coastal rivers, and culverts were installed to convey river flows. Alewives, American Shad, Blueback Herring, and other native fish species were unable to navigate the culverts. Their populations dwindled to the point where Connecticut, along with Rhode Island, Massachusetts, and North Carolina, instituted moratoriums on catching and keeping the valued forage fish.

Along the Noroton River, three parallel concrete culverts, each 300-feet long, 13-feet wide and 7-feet in height were installed, completely blocking upstream fish passage.  In order to restore important fish populations and revitalize the Noroton River, Save the Sound launched a project that reopened approximately seven miles of the river, allowing migratory fish populations to safely and easily travel through the culverts to reach their original spawning habitat upstream.

The project is a collaboration among Save the Sound, Darien Land Trust, Connecticut Department of Energy and Environmental Protection (CTDEEP), Connecticut Department of Transportation, Princeton Hydro, and other partners. For the project, Princeton Hydro lead design engineering and guided the construction of the following elements to restore upstream fish passage:

  • The installation of a concrete weir at the upstream end of the culvert to increase water depths in one culvert during low-flow periods;
  • The installation of concrete baffles to reduce flow velocities and create resting places for fish, and;
  • The installation of a naturalized, step-pool, rock ramp at the downstream end of the project to allow fish to ascend into the culvert gradually, overcoming the two-foot vertical drop present under existing conditions. The rock ramp consists of a grouted riverstone base with large grouted boulders arranged to make steps, with low-flow passage channels, between a series of pools approximately 1-foot deep that create resting places for upstream migrating fish.

Reopening river passage for migratory species will improve not only the health of the Noroton River itself, but will also benefit the overall ecosystem of Long Island Sound. Over the last decade, fish passage projects around the sound’s Connecticut and New York shores have dramatically increased freshwater spawning habitat for the foundational species whose return is restoring a more vibrant food web to the Long Island Sound.

Construction of the baffles and rock ramp were completed in time for the 2018 migratory season. Construction of the concrete weir is on temporary hold for low-flow conditions. On April 26, 2018, project partners gathered for a project celebration and the release of migratory fish by CTDEEP at an upstream location.

“It’s fascinating to feel the change in the flow patterns against your legs as you walk through the baffled culvert knowing that it will now facilitate fish passage through this restored reach,” said Princeton Hydro’s New England Regional Office Director and Water Resources and Fisheries Engineer Laura Wildman, P.E. “It is a very attractive and natural-looking fishway, and we’re proud to have created a design that fits so well into the surrounding landscape.”

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast.  To learn more about our fish passage and dam removal engineering services, visit: bit.ly/DamBarrier.

Habitat Fragmentation – Culvert Blockages and Solutions

Capture

Culvert that is “perched” due to scour by high velocity flows through the pipe. ©Princeton Hydro.

The Bucks County Chapter of Trout Unlimited (Pennsylvania) and the Cooks Creek Watershed Association were featured in the Summer 2013 edition of Trout magazine, TU’s national publication, for their culvert inventory work in the Cooks Creek watershed.  Princeton Hydro was glad to assist via directly investigating and training of volunteers to inspect and document potential culverts in need of retrofit.  Princeton Hydro also completed design concepts and opinion of costs for two example culverts.  Identified culverts in need of retrofit will help the creek’s wild brown and brook trout.  Princeton Hydro based the training on the Vermont guidelines for rating culverts for pass-ability.  In this small watershed a total of 97 culverts were identified with 32 of them as potential barriers, and 11 identified as “high priority” in need of retrofit.

Why worry about culverts, you say?

One of the most unforeseen danger to the biodiversity in our river networks is habitat fragmentation through un-passable culverts throughout the United States.  While blockages via dams number upward of 100,000 or so, the blockages created by ecologically and biologically inefficient culverts is likely to number in the millions.   The majority of these culverts are located in headwater areas of rivers, which entail greater than 50% of most river miles in a watershed; a large cumulative impact.  As a result, native key headwater species such as brook trout (Salvelinus fontinalis) in the East and cutthroat trout (Oncorhynchus clarkii) in the West have had their historic ranges reduced to a fraction of their former extent.

Historically, culverts were designed by civil engineers to maximize flow capacity and minimize pipe size in order to create the most economical structure for developers, transportation authorities, and municipalities.  The unfortunate by-product of such a design approach is that water velocity through culverts is extremely high, often running in supercritical flow, even during base flow conditions, and the smooth and featureless surfaces in the structure make it extremely difficult to navigate.  To add insult to injury, the high velocity flows also scour and erode the stream channel immediately downstream of the culvert, leaving the pipe too high out of the new channel (“perched pipes”) for organisms to pass.  Downstream water dependent organisms cannot pass upstream to new habitat, and those populations upstream become extirpated due to downstream migration and mortality, and the lack of an ability to return or be replaced.  A study of impacts of fragmentation on brook trout is ongoing by the USGS Conte Anadromous Fish Research Center (USGS CAFRC) and others, and a study recently completed documented the impacts of fragmentation of local populations provides an informative view of the blockage potential of culverted streams.

There is hope in the re-connection of stream habitat through new research and initiatives developed since 1999.  One such approach is through the Stream Simulation design originally developed in its present form at the Washington State Department of Fish & Wildlife and adopted by the US Forest Service, US Fish and Wildlife Service, as well as others, and was also adopted shortly thereafter and refined by the University of Massachusetts, Amherst Extension (Stream Continuity model) for use in Northeastern States (initially in the Massachusetts River and Stream Crossing Standards, and then adopted in similar form by surrounding states).  Through the Stream Simulation/Continuity method, a culvert is not simply measured in terms of hydraulic efficiency, but also in terms of ecological and biological efficiency.

In the most basic terms, Stream Simulation (Continuity) requires a crossing that has a minimum width of the bankfull flow of the natural channel upstream and downstream, plus more width to allow passage of terrestrial organism passage such as reptiles and amphibians (in the UMASS model the increase in width is 20% wider than bankfull, but in the current Washington State model they use 20% plus 2 feet).  The other part of the design requirement is an opening area to length ratio to allow the maximum amount of natural light penetration into the culvert (openess ratio), as many organisms, such as fish, are too intimidated to travel through dark culverts.  Other design requirements include the use of slopes and velocities that allow for fish passage, and roughness (i.e. placement of natural substrate) to also slow down the flow.

The key challenge for the retrofitting of culverts to be more passable is cost.  As with any civil engineering project, the larger it is, the more expensive.  To replace a 36 inch diameter culvert with a 10-14 foot wide structure could increase the cost by 10-fold.  However, there are ways in completing an economic analysis to justify the costs.  For example, most culverts were historically only designed to pass storms up to the 25-year event, but in even more cases, never were sized by engineers.  A larger culvert will increase its capacity and reduce overtopping events that would require road closings and worse, cause the roadway to collapse.  Road closings require emergency management and road crews to set up detours and slowing down commerce, or worse require repetitive reconstruction efforts that, over time, may exceed the cost of installing a Stream Simulation designed culvert.

DSCN2588

Same culvert as in photograph above, after the retrofit using Culvert Simulation. ©Princeton Hydro.

Other ways of encouraging installation of these larger and passable culverts is through the permitting process.  In New England, the US Army Corps of Engineers, allows for a by-pass of a formal review for their approval if the Stream Simulation guidelines are followed. This approach can save a significant amount of time to fast-track a retrofit.  To complement the Corps’ permit facilitation process, the states of Connecticut, Massachusetts, New Hampshire, and Vermont, have developed stream crossing guidelines to meet the Corps’ permit by rule compliance.  These states have even instituted state level regulations requiring aquatic organism passage via the Stream Simulation model.

Princeton Hydro was contracted to design a culvert retrofit to replace a 36 inch diameter culvert with a 12 foot wide arch culvert on a tributary of West Brook which is being monitored as part of the USGS CAFRC research project in Massachusetts.  This retrofit will be used to assess the increase in efficiency of headwater stream accessibility by local brook trout populations.

It would appear that the Stream Simulation or Continuity model is catching on, however, there needs to be more outreach and changes to existing rules in other regions of the US.  Further studies, such as that being conducted by USGS and their partners, will determine the true benefits of increasing culvert fish passage efficiency and bolster the economics of protecting fish populations for future generations.
——-
Geoffrey M. Goll, P.E.
Vice President and Founding Partner

“like” us on Facebook by clicking the link at the bottom of the page!