6 Tips to Prepare Your Pond for Spring

It’s officially time to say good-bye to winter and “spring” your pond out of hibernation mode. We’ve put together six tips for getting your pond ready for Spring and ensuring it remains healthy all year long.

1. Spring Cleaning Your Pond

The first step in preparing your pond for Spring is to give it a thorough cleaning. Remove leaves, debris and any surface algae that may have accumulated over the winter. For shallow ponds, you may be able to use a net or pond rake to remove debris and sediment from the bottom and along the perimeter of the pond.

2. Inspect Your Pond for Damage

Inspect your pond, including berms, outlet structures and trash racks for any damage that may have occurred over winter due to ice. If you observe any damage, contact Princeton Hydro immediately. One of our engineers can determine if the damage is superficial or requires more significant repairs. Also, if your pond is equipped with an aeration system, before starting it up, contact us to schedule a system inspection. A thorough inspection and proper start-up procedure will ensure the system remains fully and effectively operational for the entire summer.

3. Put Your Pond to the Test

The routine testing of your pond’s water quality is an important part of preventing harmful algae growth, fish kills and other problems. Princeton Hydro professionals can conduct a “Spring start up” water quality analysis of your pond. The resulting data will enable us to develop pro-active, eco-friendly approaches to control nuisance aquatic species and promote environmental conditions supportive of a healthy and productive fishery.

4. Recognize and Reduce Erosion by Aquascaping the Shoreline

It’s important to check the pond’s shoreline for any signs of erosion, which can be easily stabilized by planting native, riparian plants. This is called “aquascaping”. Aquascaping is a great way to beautify the shoreline, stabilize erosion problems, create fish and amphibian habitat, attract pollinating species and song birds, and decrease mosquito breeding.

Our pond and wetland scientists can design and construct a beautiful, highly functional aquascaped shoreline for your pond.

5. Consider Installing an Aeration System

Sub-surface aeration systems eliminate stagnant water and keep your pond thoroughly mixed and properly circulated. Sub-surface aeration systems are the most cost-effective and energy-efficient way to maintain proper pond circulation. Proper aeration enhances fish habitat, minimizes the occurrence of algae blooms, and prevents mosquito breeding. Contact us to discuss if aeration is the right solution for you. If it is, we can design and install the appropriate system for your pond.

6. Have an Ecologically Balanced Pond Management Plan

There is more to pond management than weed and algae treatments alone. There is also a big difference between simple pond maintenance and ecologically-based pond management. A customized pond management plan developed by a Princeton Hydro professional is the “blueprint” you need to proactively care for your pond in a very environmentally responsible manner.

Our Certified Lake and Pond Managers will assess the status of your pond and provide you with an environmentally holistic management plan that is based on the unique physical, hydrologic, chemical and biological attributes of your pond. The plan will identify the causes of your pond’s problems and provide you with the guidance needed to correct these problems. The results are far more environmentally sustainable than simple (and often unnecessary) reactive weed and algae treatments.

⋅ ⋅ ⋅

These are just a few tips to get your pond ready for a new season of enjoyment. Princeton Hydro can help you every step of the way. Our success in caring for ponds, lakes and reservoirs is the result of starting with the right plan and applying customized, environmentally-sound management techniques. Please contact us to discuss your pond management needs and to schedule an assessment.

Tracking and Managing Harmful Algae Blooms

A Presentation by Princeton Hydro Founder Dr. Stephen Souza
Available for Free Download Here

The presentation covers all things related to identifying, addressing and preventing Harmful Algae Blooms (HABs), including:

  • Understanding what defines HABs, Cyanobacteria and Cyanotoxins
  • Dispelling common misconceptions about HABs
  • Educating on the health implications associated with HABs, specifically related to drinking water and recreational water usage
  • Learning about PARETM – Princeton Hydro’s unique strategy for addressing HABs
    • (P)redict – Forecasting a bloom
    • (A)nalyze – Measuring and quantifying a bloom
    • (R)eact – Implementing measures to prevent and control a bloom
    • (E)ducate – Providing community outreach and public education

To learn more about Princeton Hydro’s Invasive Weed and Algae Management Services, visit our website or contact us!

 

Princeton Hydro Announces Leadership Transition

Princeton Hydro Opens a New Office

We are pleased to announce the opening of our new Mid-Atlantic office located in Millersville, Maryland, allowing us to better serve existing and future clients throughout Maryland and Delaware. With the addition of this new location, Princeton Hydro now has five full-service offices from Maryland to Connecticut

For the past nine years Princeton Hydro, LLC has provided pond and lake management services to clients throughout Maryland and Delaware. We are now pleased to announce the official opening of our Mid-Atlantic office, located in Millersville, MD. From this strategic location we will be able to provide both existing and future clients in the Maryland and Delaware region with a full suite of services including but not limited to:

Over the past 20 years Princeton Hydro has become the recognized industry leader in the management and restoration of lakes and ponds. Our certified lake and pond managers are backed by a dedicated staff of water resource engineers, wetland scientists and fishery biologists who have the expertise and experience to solve even the most difficult lake and pond problems.

To commemorate the opening of our Maryland office, Princeton Hydro is extending discounted prices to new and existing clients in Maryland and Delaware for 2017 lake and pond management services. If you would like to schedule a no-cost, no-obligation site consultation, please contact Scott Churm, Director of Aquatic Operations, at schurm@princetonhydro.com.

We appreciate your business!

 

The Plight of Aging Dams, and One Solution

As dams age, the danger to life and property around them increases. If they were to suddenly fail and flood downstream communities and infrastructure, there would be serious loss of property and life. More and more, dam removal has become the best option for property owners who no longer want or can no longer afford the rising cost of maintenance and repair work required to maintain such a complex structure.

The Courier-Post recently published this Commentary piece titled, “The Plight of Aging Dams, and One Solution”, which was written by Princeton Hydro’s Vice President and Principal Engineer Geoffrey M. Goll:

Many of our nation’s dams, while originally intended to provide benefits for mills, water supply and energy generation, are severely aged and unmaintained. Nearly 20,000 of the dams on the Army Corps of Engineers’ National Inventory of Dams – which doesn’t even include many dams that are not inventoried or known about – were built in the 1960s. With expected lifespans of 50 years, these dams have reached their limit. And by 2020, 70 percent of all dams will be over 50 years old. Like roads and bridges, dams also require upkeep, maintenance and eventually removal or rehabilitation.

As dams age, the danger to life and property around them increases. If they were to suddenly fail and flood downstream communities and infrastructure, there would be loss of property and life. The Association of State Dam Safety Officials, the professional organization for dam safety engineering professionals and regulators, estimates there would need to be a $21 billion investment to repair just 2,000 deficient, high-hazard dams. More and more, the removal of dams has become an option for owners who no longer want or no longer can afford the rising cost of maintenance and repair work required to maintain such a complex structure.

For dams like this, removal benefits local economies, and eliminates threats to people and property in local communities. There are also many byproduct benefits, including restoring fish migration routes, improving water quality, restoring floodplain functions and values, and increasing biodiversity.

On Sept. 8, we had the honor of meeting the Secretary of the Interior Sally Jewell during a visit of our Hughesville Dam removal project on the Musconetcong River, located in northwestern New Jersey. This project exemplifies the successes that can be achieved through public-private partnerships, including local communities, state and federal agencies, nongovernmental organizations, and private commercial entities. This is the fifth dam removed on the Musconetcong River by a coalition of stakeholders, led by the Musconetcong Watershed Association. The Department of the Interior (specifically, the U.S. Fish and Wildlife Service) provided funding to remove this very old, out-of-compliance dam.

The success of these partnerships is due to the unique strengths that each organization brings to the table. This project achieved the removal of a flood and safety hazard, and will restore additional river miles for migratory fish, improve water quality by removing the heat sink of the reservoir, and provide additional safe passage for recreation along the river.

It is easy to see why Secretary Jewell chose this site to visit, but the old and outdated dam at Hughesville is far from alone. Across the nation, we need to remove dams like this at a much larger scale – aging dams that no longer are of value to us, but increase the danger to those who live downstream. If we can build on this momentum and start to address the issue of dam safety compliance on a national scale, we can address these threats to American’s safety and strengthen local economies.

Lake Management and Restoration in the Hudson River Valley

Lake Management Planning in Action
at Sleepy Hollow Lake and Truesdale Lake

The Hudson River Valley encompasses 7,228 square miles along the eastern edge of New York State. It comprises 3 million residents, 133 communities and 553 significant freshwater lakes, ponds and reservoirs. Princeton Hydro has worked with municipalities and organizations in the Hudson River Valley for over 18 years actively restoring, protecting and managing waterbodies throughout the area.

Princeton Hydro is currently implementing customized Lake Management Plans at two waterbodies in the Hudson River Valley: Sleepy Hollow Lake, a 324-acre drinking water reservoir/recreational lake located in Green County, NY and Truesdale Lake, an 83-acre lake in Northern Westchester County, NY.

Sleepy Hollow Lake

Stretching over two and a half miles long and reaching depths of approximately 70 feet, Sleepy Hollow Lake is a NYSDEC Class “A” drinking water reservoir that provides potable water for the Sleepy Hollow community. The lake is also extensively used by residents for swimming, boating and water-skiing. And, it is recognized as an outstanding large-mouth bass and white crappie (current New York State record holder) fishery!

Princeton Hydro was hired by the Association of Property Owners (APO) at Sleepy Hollow Lake to develop a comprehensive lake management plan. The first step involved an in-depth analysis of the biological, chemical and physical attributes of the lake, with the goal being to generate a database that can be used to better understand the interactions defining the Sleepy Hollow Lake ecosystem.

The data collection and investigation phase includes:

  • Watershed Investigation: an in-depth assessment of the major and minor tributaries and road network in order to identify areas of stream bank and ditch erosion; sources of both sediment and nutrient loading to the lake
  • Bathymetric Survey: the accurate mapping of water depths and the quantification of the amount of accumulated, unconsolidated sediment present in the lake
  • Fisheries & Food Web Study: the collection of fish and plankton data for the purpose of creating a comprehensive fisheries management program focused on managing the lake’s outstanding fishery, further promoting the ecological balance of the lake, and enhancing lake water quality
  • Aquatic Plant Mapping: the development of detailed maps identifying the plant species present in the lake along with their relative abundance and distribution throughout the lake, but especially within the shallower coves
  • Hydrologic & Pollutant Budget: the computation of the lake’s hydrologic budget and pollutant loading budget. The hydrologic budget represents the water balance of the lake and is an estimate of all of the inputs and losses of water. The pollutant budget represents an estimate of the amount of nitrogen and phosphorus entering the lake from various sources. These data are used to evaluate the effectiveness of lake management options, enabling us to determine the best, most ecologically sound and most cost-effective approach to protect and improve the lake’s water quality now and into the future.

Princeton Hydro is now in the process of utilizing all of the data developed during the investigation phase of the project to create a comprehensive Lake Management Plan that will be used to guide the APO’s future lake restoration and protection initiatives. The Lake Management Plan and supporting data will also be used by Princeton Hydro on behalf of the APO to seek grant funding for various lake and watershed restoration projects.

Princeton Hydro is also overseeing the aquatic plant management program at Sleepy Hollow Lake, the focus of which is to control invasive plant species in a manner consistent with and complimentary of the lake’s overall ecological enhancement.

Truesdale Lake

At Truesdale Lake, Princeton Hydro is working with the Truesdale Lake Property Owners Association (TLPOA) to develop a comprehensive Lake Management Plan. The Plan provides a detailed project implementation roadmap for TLPOA, including recommendations for priority ranking of particular activities and restoration measures. A key element of the Plan are the short-term (1-year) and long-term (5-year) water quality and problematic algae and invasive aquatic plant control goals. Another highlight of the Plan is the review of Federal, State, County and local grants, programs and initiatives that may provide funding for identified lake and watershed projects.

During the Plan’s development, Princeton Hydro has provided the TLPOA with lake management consultation services such as community education initiatives, the coordination of NYSDEC permitting activities associated with the implementation of lake restoration measures, and the oversight and administration of an aquatic weed management program at the lake.

Earlier this year, Truesdale Lake experienced excessive aquatic weed growth, which significantly reduced the water quality, recreational use and aesthetics of the lake. Princeton Hydro utilized its Truxor, an eco-friendly, amphibious machine, to cut and remove the nuisance weed growth from the lake. This program helped reduce the negative impacts to the lake and lake users caused by the dense weed growth. Future use of the Truxor to remove invasive weeds is already part of the long-term Lake Management Plan for TLPOA. The Truxor will be used in concert with other measures to control invasive weed growth and restore a more balanced native aquatic plant community.

For more information about Princeton Hydro’s work in the Hudson River Valley or to discuss your project goals, please contact us.

Success Spotlight: Strawbridge Lake

The Princeton Hydro team recently completed a spadderdock removal project at Strawbridge Lake, a 33-acre lake considered to be one of the most valuable open space assets in Moorestown, New Jersey.

Spadderdock is an invasive aquatic plant found in lakes and ponds throughout the Eastern US. It can grow quickly and reach large populations totally covering the water surface and shading the bottom so that nothing else can grow. Spadderdock can eliminate important, native plant species and clog waterways.

Princeton Hydro utilized its Truxor DM 5045, an eco-friendly amphibious machine, to dig up the plants at their roots and remove them from the lake. Check out the below before and after photos to see the dramatic transformation. Special kudos to our Senior Scientist J.P. Bell for a job well done! Read more about pesticide-free #lakemanagement solutions!

Client Spotlight: Roaring Brook Lake, Putnam Valley, NY

A Comprehensive Lake Management Plan Designed by Princeton Hydro

roaring-brook-lake Since 1998, Princeton Hydro has been working with the Town of Putnam Valley, often referred to as the Town of Lakes, to restore and maintain its waterbodies. The most recent area of focus is Roaring Brook Lake, a 115-acre man-made lake surrounded by a wooded landscape community that includes 260+ homes. The lake provides a variety of recreational opportunities for boaters, anglers, swimmers and outdoor lovers and is the center point of the Roaring Brook Lake District.

The Town of Putnam Valley and the Roaring Brook Lake District hired Princeton Hydro to conduct a thorough analysis of the lake’s ecological health, identify problems affecting the quality of the lake, and develop a detailed plan to improve and protect the lake. Specifically, Princeton Hydro will implement a detailed assessment of the lake that involves water quality monitoring, bathymetric mapping (measurement of lake depth and sediment thickness), aquatic plant surveys, and quantification of the lake’s hydrologic and pollutant budgets. These data will be utilized collectively to produce a comprehensive management plan for Roaring Brook Lake and its watershed.

Water Quality Monitoring

Water quality data are used to interpret the existing chemistry of the lake, identify water quality trends, pinpoint problems and assess nutrient levels.

At Roaring Brook Lake, Princeton Hydro will specifically collect in-situ data from the surface to the bottom of the water column. The resulting temperature, dissolved oxygen, pH and conductivity data will be used in combination with laboratory generated data to assess the lake’s thermal stability and investigate the potential for internal phosphorus loading. In addition, samples will be collected to identify phytoplankton and zooplankton in the lake; some of the plankton is considered a nuisance while others are considered valuable relative to the lake’s food web.

Bathymetric Assessment

The bathymetric assessment will generate accurate lake water depth, and provide sediment thickness and distribution data for the entire body of water. These data are then used to evaluate the need for dredging, asses how and where aquatic plants become colonized and other management options that can affect long-term decisions regarding the restoration and protection of Roaring Brook Lake. The bathymetric data are also used in the various trophic models that help predict the lake’s response to incoming nutrients.

Specifically, Princeton Hydro will utilize hydrographic surveying methods to conduct the bathymetric assessment of Roaring Brook Lake. A specialized dual frequency fathometer will be used to measure water depth and the thickness of the unconsolidated sediment present throughout the lake. The fathometer is directly tied into GPS, so data are consistently collected at the exact position of the survey transects. The GPS data and accompanying water depth data will be placed into a GIS format for the generation of morphometric data and bathymetric maps of the lake.

Aquatic Plant Mapping

Aquatic plants hold sediments in place, reduce erosion and provide habitat for fish and other important wildlife and insects. Although native aquatic plants are imperative to a lake’s health, an overabundance of these plants and the presence of invasive plants can have very negative impacts.

Princeton Hydro will be conducting a complete mapping of the aquatic plant community within Roaring Brook Lake to identify the plant species present in the lake, their relative abundance and location, and provide a basis for future evaluation of changes in the plant community. This data will greatly inform lake management activities moving forward. Additionally, with this data, Princeton Hydro will be able to assess the effectiveness of the resident grass carp – currently stocked in the lake – in keeping the submerged vegetation under control.

 

Hydrologic and Pollutant Budget

The hydrologic budget represents the water balance of a lake, accounting on an annual scale for all of the inputs and losses of water. The hydrologic data is used extensively in conducting trophic state analyses and is important in determining the feasibility and utility of many in-lake restoration techniques. At Roaring Brook Lake, Princeton Hydro will investigate and quantify four key components of the hydrologic budget, including direct precipitation, overland runoff (stormwater, snowmelt, etc.), tributary inflow and groundwater seepage.

Once the hydrologic budget is complete and land-use has been categorized and quantified, a pollutant budget can then be developed. The development of a detailed pollutant budget is a critical component of any lake management plan. For the purpose of the Roaring Brook Lake study, the term pollutant refers to the nutrients nitrogen and phosphorus as well as total suspended solids. The pollutant budget represents a quantification of the input of pollutants from various sources to the lake. Because the amount of nitrogen and phosphorus present in the lake stimulates eutrophication and results in water quality impacts, proper quantification of the nutrient load is critical for the development of a site-specific and cost effective management plan.

Data Analysis

The data analysis for Roaring Brook Lake will focus on identifying an acceptable in-lake condition (i.e. specific level of algal biomass in the lake) and correlate this to the lake’s annual phosphorus load through a robust water quality model.

The data analysis will involve the review of both historical and current data and will be used to identify correlations and relationships between existing pollutant concentrations/loads and unacceptable water quality conditions (i.e. algal blooms, high rates of turbidity, nuisance densities of aquatic plants, etc.). Water quality thresholds and goals will be established for assessing the long-term progress of the lake management plan.

Lake Management Plan

roaring-brook-lake-1Properly managing your lakes and ponds starts with developing a customized management plan and involves a holistic approach to ensure continued success.

A good management plan is informed by substantial data collection and analysis (as described above); includes any necessary permit requirements and a proposed timetable for implementation; provides recommendations for priority ranking of particular activities and restoration measures; and discusses predicted benefits of the plan’s implementation and how each activity is linked to the established water quality goals. A well-crafted and thorough lake management plan will also include a review of the various Federal, State, County and local grants, programs and initiatives that may provide funding for the identified in-lake and watershed projects.

• • •

Princeton Hydro’s work with Roaring Brook Lake marks the 16th project they’ve conducted for the Town of Putnam Valley. Princeton Hydro’s proven success in watershed management stems from the cumulative training and experience of its staff, and its ability to develop watershed management solutions that are both practical and effective, which has led to the firm’s very high success rate in improving water quality.

If you’re interested in developing a customized, comprehensive management plan for your lake or pond, please contact us!

 

 

 

 

Stormwater Projects in Action

Improving Barnegat Bay through Green Infrastructure and Stormwater Management

FREE BROCHURE DOWNLOAD

American Littoral Society, Ocean County Soil Conservation District and Princeton Hydro recently held a Stormwater Projects in Action workshop. The workshop focused on a number of 319(h) funded projects designed by Princeton Hydro and implemented by American Littoral Society in the Long Swamp Creek/Lower Toms River sub-watersheds of Barnegat Bay. Those projects exemplified how green infrastructure techniques could be used to retrofit, upgrade and compliment standard stormwater management methods. This included the restoration of healthy soils and the construction/installation of bioretention basins, rain gardens, porous pavement, and sub-surface Manufactured Treatment Devices (MTDs).

Event participants learned about the problems affecting Barnegat Bay due to over-development and improper stormwater management. They were presented with examples of the types of green infrastructure solutions that can be implemented in any setting in order to achieve cleaner water and less flooding.

A brochure detailing each of the projects and providing an in-depth look at the incredible work being done to save Barnegat Bay was distributed to event attendees. You can download your free copy here:

screen-shot-2016-10-05-at-8-58-55-am

Princeton Hydro President Dr. Stephen Souza gave two presentations at the event. The first presentation explored the Matrix Scoring Tool that Princeton Hydro’s Senior Environmental Scientist Paul Cooper along with Dr. Souza developed to quantitatively evaluate the relative benefit of conducting one stormwater project versus another in a particular area. The 2nd presentation provided an overview of the five stormwater improvement projects that Princeton Hydro conducted as part of the $1,000,000 319(h) grant secured for American Littoral Society. If you’re interested in receiving a copy of either presentation, submit a comment below or email us.

Clean water is fundamental to all life.