The Return of the American Shad to the Musconetcong River

PHOTO/New Jersey Division of Fish and Wildlife biologist Pat Hamilton holds a shad near the Warren Glen Dam

After a 250+ year absence, American shad have returned to the Musconetcong River in Hunterdon and Warren counties. This milestone in the ecological recovery of the river is the result of the removal of dams on the lower Musconetcong several years ago, followed by the removal of the Hughesville Dam in Warren County last year.

Removing the dams opened nearly six miles of the Musconetcong to migratory fish, such as American shad, that spend much of their lives in the ocean but return to rivers and their tributaries to spawn. The shad’s return is a good sign of the overall ecological health and diversity of the river.

Princeton Hydro was proud to partner with the Musconetcong Watershed Association and so many other incredible organizations who came together on the Hughesville Dam Removal project. To date, Princeton Hydro has investigated, designed and permitted five dam removals on the Musconetcong.

The next Musconetcong dam targeted for removal is the 32-foot high Warren Glen Dam, less than a mile farther upstream. It is the largest dam in the river; by comparison, the Hughesville Dam was 15-feet tall.

Princeton Hydro President Geoff Goll, P.E. published this commentary piece titled, “The Return of the American Shad to the Musconetcong River:”

Update (June 15, 2017)NJDEP issued press release on the finding of American shad on the Musky. Bob Shin, NJDEP Commissioner, stated, “[t]he return of shad, a benchmark species indicative of the overall ecological health and diversity of a waterway, is an exciting milestone…. This achievement is the direct result of an ongoing partnership among state and federal agencies, nonprofit groups, and dam owners – all committed to making this beautiful waterway free-flowing again.

On June 7, 2017, Princeton Hydro celebrated along with the Musconetcong Watershed Association (and an excellent story of the MWA, human history of the river, and the efforts to preserve the history and ecology can be found here) and other project partners, the discovery of American shad on the Musconetcong River in NJ, over 250 years after they were blocked from this major tributary of the Delaware River – On September 8, 2016, then Secretary of the Interior, Sally Jewell, held a press conference to celebrate the initial breach of the Hughesville Dam on the Musconetcong River (time lapse of removal is here). The press conference was held as the Department of the Interior via of the US Fish and Wildlife Service provided the funding to remove this obsolete structure through their Hurricane Sandy Recovery funding and the Natural Resource Damage Assessment and Restoration program. In addition to the Honorable Sally Jewell, NJDEP Commissioner Bob Martin, and US Army Corp of Engineers, Philadelphia District Commander Lt. Colonel Michael Bliss, were also on hand to speak about the importance of the Hughesville Dam removal and dam removal in general. To have such dignitaries at the highest levels of our Federal and State government speak at a project our firm designed was truly an honor and privilege. It was a great day to celebrate the next obsolete dam on the Musconetcong River to fall to the progress of river restoration. However, this would pale in comparison to the news we received on Wednesday, June 7, 2017, when the NJ Division of Fish and Wildlife confirmed the presence of the American shad (Alosa sapidissima) above the Hughesville Dam!

Ms. Patricia Hamilton, Fisheries Biologist of NJ Fish And Wildlife, reported that they “spotted small schools of American Shad (at most 6 at a time) and captured 4 several hundred yards downstream of the Warren Glen Dam”, five miles from the confluence of the Delaware River. This is the first documentation of American shad on this river in over 250 years! So, what is the big deal you may ask.

The American shad is the Mid-Atlantic and Southeastern United States’ salmon; it is actually a clupeid, a forage type fish closely related to herrings and sardines. Like herrings and sardines, they are a very oily fish, high in omega-3 fats, and low in contamination. It is also a fairly large clupeid, reaching three to eight pounds as adults. Like the salmon, American shad are anadromous, meaning they live the major part of their lives in the ocean and spawn up the coasts’ rivers. The American shad is not a spectacularly looking fish to say the least, and in fact, looks like a “generic” illustration of a fish, unlike the sleek and sexy salmon. It doesn’t even jump. However, this fish is a long distance and endurance swimmer, who’s migration from its hatching in rivers of the East Coast to its primary habitat in the Atlantic Ocean up in the Gulf of Maine, makes it one of the Earth’s great travelers. It can swim nearly 20,000 kilometers in its first five years of life and can dive to depths of up to 375 meters. And like all of its clupeid kindred, it is both a key prey species for many large fish and cetaceans in the Atlantic’s pelagic zone (open ocean) and an important commercial fish. But it is the existence of over-fishing, pollution and dams that had brought this species to its knees in many of the major eastern US rivers.

While the Delaware River shad and herring species have rebounded somewhat from low populations in the mid-1900s with the advent of the US Clean Water Act, they continue to struggle to regain their numbers, and in fact, there is now a moratorium on catching river herring in the Delaware River, and NJ has a moratorium on the harvesting of shad and herring on its tributaries to the Delaware River and Atlantic Ocean. As far as tributary access is concerned, the largest tributaries to the Delaware, the Schuylkill and Lehigh Rivers, are still blocked by dams to their mouths with very little efficiency of fish ladders provided; with their dams having very little success in gaining support for the removal of their blockages. So, any gains in additional spawning habitat for such anadromous species is viewed as a significant victory. The opening of the Musconetcong River to migrating fish will be a large contributor to the rebound of American shad, and other river herring species.

As one of the original 13 colonies, NJ was an integral partner in the start of the United States and early industrial revolution. It has been documented through our research during the dam removal regulatory permit application process on this waterway that the Musconetcong River has been dammed just about all the way to its confluence with the Delaware River since the mid-1700s, and likely much earlier. So, before there was anyone who understood the importance of unimpeded rivers for fish migration, this particular route was cut-off in its entirety, and then remained so for well over 250 years. So, it is understandable that there was no reason to assume that anadromous fish, such as shad, would resume the use of the river in a short period of time; however, there existed the right habitat for them, should they be afforded access…and the hope of the partners working on this river. There were doubters, to be sure, but “lo and behold”, we now know these mighty fish took advantage of an opening almost immediately.

Now, I am not stating that American shad immediately realized that the Hughesville Dam was gone and took a B-line from the Delaware River to the highest unimpeded location. First, other dams downstream of the Hughesville Dam had been removed over the past several years. These dams included the Finesville Dam (for an excellent video of the story of this dam removal, check out this video by the US Fish and Wildlife Service), removed in 2011 and the Reigelsville Dam remnants (there were two additional remnants found when the first foundation was removed) soon after the Finesville Dam was removed. So, it is likely that American Shad had started moving up the river to the base of the Hughesville Dam between 2011 and 2016. Still the response by American shad is nothing short of spectacular. For the over 250 years this species has not been able to use this river, at all, and now, within a span less than six years of dam removal activities, this fish is raring to comeback and, hopefully, spawn and increase their numbers.

And the efforts are not nearly complete for the Musconetcong River. The finding of the American shad five miles upstream from the Delaware River shows that this river can and, now, does support this fish. This generic looking fish, yet awesome product of evolution should only fuel the fire of continued restoration efforts, proof-positive that the labor and funds spent here, in this river, gets results. Such funds and labor (an staggering amount of time, blood, sweat, and tears) are required in order to get the river restoration work done. These projects have received the majority of their backing from the federal government, through grant programs, natural resource damage funds, and direct Congressional authorized funds. Without support from Washington, D.C.,, and Trenton, none of this work would be possible. And to get these funds, required work by the many team partners to prepare applications, meet with federal agencies, and educate the public through open and transparent meetings and communication. This was an impressive effort by the residents of this watershed, professionals who provided their expertise, and the state and federal employees who have dedicated their lives to this kind of work.

The Musconetcong River, with its recovering ecosystem, and its human and non-human inhabitants continue to amaze me in how we should all strive to strike balance between man and nature; and all this is being accomplished in the most densely populated state in the nation.

The finding of American shad gives me reason to cheer, and is why I do what I do. This is it, the return of a species that at one time we had no assurance would return, has returned. This is hope for us, after all.

Read more about Princeton Hydro’s river restoration and dam/barrier services on our website. Please contact us anytime if you have a project you’d like to discuss.

NJ Audubon undertakes $470G study of climate change impact on wetlands

Princeton Hydro is proud to be a partner on this incredible project

If you’ve ever gone birdwatching at any east coast wildlife refuge, then you probably understand the value of coastal impoundments. These man-made wetland habitats are contained by embankments and have gates that allow managers to manipulate water levels. In addition to being valuable, these structures are also very vulnerable to sea level rise and extreme weather.

Through a $470,000 federal grant, the New Jersey Audubon is implementing an initiative to study the vulnerability of these impoundments to climate change induced environmental impacts. Funded by the U.S. Department of the Interior via the National Fish and Wildlife Foundation, the Coastal Impoundment Vulnerability and Resilience Project (CIVRP) aims to map and catalog all state, federal, and privately owned coastal impoundments from Virginia to Maine. The project is a cooperative effort of a diverse team of partners including researchers from New Jersey Audubon, National Wildlife Federation, Conservation Management Institute (Virginia Tech), U.S. Fish and Wildlife Service and Princeton Hydro.

The CIVRP will ultimately reduce climate vulnerability and enhance the natural ecosystem function of these precious and treasured wetland habitats. Read the full article from MyCentralJersey.

Princeton Hydro specializes in the restoration, creation and enhancement of tidal and freshwater wetlands. Contact us to learn more, and read about some of our award-winning wetland-related projects here.

Earth Day Donation Drive:

“Follow Us” to Raise Money for American Rivers

In celebration of Earth Day, help Princeton Hydro donate to American Rivers!

For every new follower we collect on any of our social media channels between now and Earth Day (April 22, 2017), we’ll donate $.50 to American Rivers, an organization dedicated to protecting our precious water resources. Donations help to restore dammed rivers, protect wild rivers and revitalize river communities.

Support American Rivers by following our social media channels and spreading the word. You can find us on Twitter, LinkedIn, Facebook and Instagram.

 

 

Princeton Hydro Projects Recap

In Case You Missed It:
A Recap of Projects Recently Completed by the
Princeton Hydro Aquatic & Engineering Departments

Members of our New England Regional Office team conducted a detailed survey at a culvert prioritized for replacement in the Town of Stony Point, New York. This structure was one of several identified as important to both habitat and flood risk during the development of Stony Point’s Road-Stream Crossing Management Plan. The Princeton Hydro team will use the collected data to develop a conceptual design and implementation strategy for a replacement structure using the Stream Simulation design method developed by the U.S. Forest Service.

Special thanks to Paul Woodworth, Fluvial Geomorphologist, and Sophie Breitbart, Staff Scientist, for their excellent work on this project!

The Truxor was put to work dredging a pond in Union Gap, New Jersey. The Truxor is an extremely versatile amphibious machine that can perform a variety of functions, including weed cutting and harvesting, mat algae and debris removal, silt pumping, channel excavation, oil spill clean-up, and much more!

We recently designed and installed a solar-powered aeration system in Hillsborough, New Jersey. Solar pond and lake aeration systems are cost-effective, eco-friendly, sustainable, and they eliminate the need to run direct-wired electrical lines to remote locations. Princeton Hydro designs, installs and maintains various aeration and sub-surface destratification systems for public drinking water purveyors, municipal and county parks, private and public golf courses, and large lake communities throughout the East Coast.

Here’s a look at a project in Elizabeth, New Jersey to clear the area of phragmites. Phragmites is an invasive weed that forms dense thickets of vegetation unsuitable for native fauna. It also outcompetes native vegetation and lowers local plant diversity. Previously, the entire site was filled with phragmites. Late last year, we utilized the Marsh Master to remove the invasive weed. Now that its almost Spring, we’re back at the site using the Marsh Master to mill and cultivate the ground in preparation for re-planting native plant species. A big shout out to our Aquatic Specialist John Eberly for his great work on this project!

In this photo, our intern and engineering student currently studying at Stevens Institute of Technology, Veronica Moditz, is gathering data on the Hughesville Dam removal. She’s using GPS to check the elevation of the constructed riffle on the beautiful Musconetcong River.

Members of the Princeton Hydro team worked in South New Jersey doing annual maintenance on nine stormwater infiltration basins that were also designed and constructed by Princeton Hydro. The maintenance work involves clearing vegetation from the basins to ensure the organic matter does not impede infiltration of the water as per the basins’ design. This project also involves the management of invasive plant species within the basins. Stormwater infiltration basins provide numerous benefits including preventing flooding and downstream erosion, improving water quality in adjacent waterbodies, reducing the volume of stormwater runoff, and increasing ground water recharge.

We recently completed a project in New Jersey for which we used our Truxor machine to dredge a stormwater retention basin. The basin had accumulated large amounts of sediment which were impeding the flow of water into the basin. We equipped the Truxor with its standard bucket attachment and a hydraulic dredge pump. The dredging operation was a success and now the basin is clear and functioning properly.

Stay Tuned for More Updates!

6 Tips to Prepare Your Pond for Spring

It’s officially time to say good-bye to winter and “spring” your pond out of hibernation mode. We’ve put together six tips for getting your pond ready for Spring and ensuring it remains healthy all year long.

1. Spring Cleaning Your Pond

The first step in preparing your pond for Spring is to give it a thorough cleaning. Remove leaves, debris and any surface algae that may have accumulated over the winter. For shallow ponds, you may be able to use a net or pond rake to remove debris and sediment from the bottom and along the perimeter of the pond.

2. Inspect Your Pond for Damage

Inspect your pond, including berms, outlet structures and trash racks for any damage that may have occurred over winter due to ice. If you observe any damage, contact Princeton Hydro immediately. One of our engineers can determine if the damage is superficial or requires more significant repairs. Also, if your pond is equipped with an aeration system, before starting it up, contact us to schedule a system inspection. A thorough inspection and proper start-up procedure will ensure the system remains fully and effectively operational for the entire summer.

3. Put Your Pond to the Test

The routine testing of your pond’s water quality is an important part of preventing harmful algae growth, fish kills and other problems. Princeton Hydro professionals can conduct a “Spring start up” water quality analysis of your pond. The resulting data will enable us to develop pro-active, eco-friendly approaches to control nuisance aquatic species and promote environmental conditions supportive of a healthy and productive fishery.

4. Recognize and Reduce Erosion by Aquascaping the Shoreline

It’s important to check the pond’s shoreline for any signs of erosion, which can be easily stabilized by planting native, riparian plants. This is called “aquascaping”. Aquascaping is a great way to beautify the shoreline, stabilize erosion problems, create fish and amphibian habitat, attract pollinating species and song birds, and decrease mosquito breeding.

Our pond and wetland scientists can design and construct a beautiful, highly functional aquascaped shoreline for your pond.

5. Consider Installing an Aeration System

Sub-surface aeration systems eliminate stagnant water and keep your pond thoroughly mixed and properly circulated. Sub-surface aeration systems are the most cost-effective and energy-efficient way to maintain proper pond circulation. Proper aeration enhances fish habitat, minimizes the occurrence of algae blooms, and prevents mosquito breeding. Contact us to discuss if aeration is the right solution for you. If it is, we can design and install the appropriate system for your pond.

6. Have an Ecologically Balanced Pond Management Plan

There is more to pond management than weed and algae treatments alone. There is also a big difference between simple pond maintenance and ecologically-based pond management. A customized pond management plan developed by a Princeton Hydro professional is the “blueprint” you need to proactively care for your pond in a very environmentally responsible manner.

Our Certified Lake and Pond Managers will assess the status of your pond and provide you with an environmentally holistic management plan that is based on the unique physical, hydrologic, chemical and biological attributes of your pond. The plan will identify the causes of your pond’s problems and provide you with the guidance needed to correct these problems. The results are far more environmentally sustainable than simple (and often unnecessary) reactive weed and algae treatments.

⋅ ⋅ ⋅

These are just a few tips to get your pond ready for a new season of enjoyment. Princeton Hydro can help you every step of the way. Our success in caring for ponds, lakes and reservoirs is the result of starting with the right plan and applying customized, environmentally-sound management techniques. Please contact us to discuss your pond management needs and to schedule an assessment.

Tracking and Managing Harmful Algae Blooms

A Presentation by Princeton Hydro Founder Dr. Stephen Souza
Available for Free Download Here

The presentation covers all things related to identifying, addressing and preventing Harmful Algae Blooms (HABs), including:

  • Understanding what defines HABs, Cyanobacteria and Cyanotoxins
  • Dispelling common misconceptions about HABs
  • Educating on the health implications associated with HABs, specifically related to drinking water and recreational water usage
  • Learning about PARETM – Princeton Hydro’s unique strategy for addressing HABs
    • (P)redict – Forecasting a bloom
    • (A)nalyze – Measuring and quantifying a bloom
    • (R)eact – Implementing measures to prevent and control a bloom
    • (E)ducate – Providing community outreach and public education

To learn more about Princeton Hydro’s Invasive Weed and Algae Management Services, visit our website or contact us!

 

Princeton Hydro Announces Leadership Transition

Princeton Hydro Opens a New Office

We are pleased to announce the opening of our new Mid-Atlantic office located in Millersville, Maryland, allowing us to better serve existing and future clients throughout Maryland and Delaware. With the addition of this new location, Princeton Hydro now has five full-service offices from Maryland to Connecticut

For the past nine years Princeton Hydro, LLC has provided pond and lake management services to clients throughout Maryland and Delaware. We are now pleased to announce the official opening of our Mid-Atlantic office, located in Millersville, MD. From this strategic location we will be able to provide both existing and future clients in the Maryland and Delaware region with a full suite of services including but not limited to:

Over the past 20 years Princeton Hydro has become the recognized industry leader in the management and restoration of lakes and ponds. Our certified lake and pond managers are backed by a dedicated staff of water resource engineers, wetland scientists and fishery biologists who have the expertise and experience to solve even the most difficult lake and pond problems.

To commemorate the opening of our Maryland office, Princeton Hydro is extending discounted prices to new and existing clients in Maryland and Delaware for 2017 lake and pond management services. If you would like to schedule a no-cost, no-obligation site consultation, please contact Scott Churm, Director of Aquatic Operations, at schurm@princetonhydro.com.

We appreciate your business!

 

The Plight of Aging Dams, and One Solution

As dams age, the danger to life and property around them increases. If they were to suddenly fail and flood downstream communities and infrastructure, there would be serious loss of property and life. More and more, dam removal has become the best option for property owners who no longer want or can no longer afford the rising cost of maintenance and repair work required to maintain such a complex structure.

The Courier-Post recently published this Commentary piece titled, “The Plight of Aging Dams, and One Solution”, which was written by Princeton Hydro’s Vice President and Principal Engineer Geoffrey M. Goll:

Many of our nation’s dams, while originally intended to provide benefits for mills, water supply and energy generation, are severely aged and unmaintained. Nearly 20,000 of the dams on the Army Corps of Engineers’ National Inventory of Dams – which doesn’t even include many dams that are not inventoried or known about – were built in the 1960s. With expected lifespans of 50 years, these dams have reached their limit. And by 2020, 70 percent of all dams will be over 50 years old. Like roads and bridges, dams also require upkeep, maintenance and eventually removal or rehabilitation.

As dams age, the danger to life and property around them increases. If they were to suddenly fail and flood downstream communities and infrastructure, there would be loss of property and life. The Association of State Dam Safety Officials, the professional organization for dam safety engineering professionals and regulators, estimates there would need to be a $21 billion investment to repair just 2,000 deficient, high-hazard dams. More and more, the removal of dams has become an option for owners who no longer want or no longer can afford the rising cost of maintenance and repair work required to maintain such a complex structure.

For dams like this, removal benefits local economies, and eliminates threats to people and property in local communities. There are also many byproduct benefits, including restoring fish migration routes, improving water quality, restoring floodplain functions and values, and increasing biodiversity.

On Sept. 8, we had the honor of meeting the Secretary of the Interior Sally Jewell during a visit of our Hughesville Dam removal project on the Musconetcong River, located in northwestern New Jersey. This project exemplifies the successes that can be achieved through public-private partnerships, including local communities, state and federal agencies, nongovernmental organizations, and private commercial entities. This is the fifth dam removed on the Musconetcong River by a coalition of stakeholders, led by the Musconetcong Watershed Association. The Department of the Interior (specifically, the U.S. Fish and Wildlife Service) provided funding to remove this very old, out-of-compliance dam.

The success of these partnerships is due to the unique strengths that each organization brings to the table. This project achieved the removal of a flood and safety hazard, and will restore additional river miles for migratory fish, improve water quality by removing the heat sink of the reservoir, and provide additional safe passage for recreation along the river.

It is easy to see why Secretary Jewell chose this site to visit, but the old and outdated dam at Hughesville is far from alone. Across the nation, we need to remove dams like this at a much larger scale – aging dams that no longer are of value to us, but increase the danger to those who live downstream. If we can build on this momentum and start to address the issue of dam safety compliance on a national scale, we can address these threats to American’s safety and strengthen local economies.

Lake Management and Restoration in the Hudson River Valley

Lake Management Planning in Action
at Sleepy Hollow Lake and Truesdale Lake

The Hudson River Valley encompasses 7,228 square miles along the eastern edge of New York State. It comprises 3 million residents, 133 communities and 553 significant freshwater lakes, ponds and reservoirs. Princeton Hydro has worked with municipalities and organizations in the Hudson River Valley for over 18 years actively restoring, protecting and managing waterbodies throughout the area.

Princeton Hydro is currently implementing customized Lake Management Plans at two waterbodies in the Hudson River Valley: Sleepy Hollow Lake, a 324-acre drinking water reservoir/recreational lake located in Green County, NY and Truesdale Lake, an 83-acre lake in Northern Westchester County, NY.

Sleepy Hollow Lake

Stretching over two and a half miles long and reaching depths of approximately 70 feet, Sleepy Hollow Lake is a NYSDEC Class “A” drinking water reservoir that provides potable water for the Sleepy Hollow community. The lake is also extensively used by residents for swimming, boating and water-skiing. And, it is recognized as an outstanding large-mouth bass and white crappie (current New York State record holder) fishery!

Princeton Hydro was hired by the Association of Property Owners (APO) at Sleepy Hollow Lake to develop a comprehensive lake management plan. The first step involved an in-depth analysis of the biological, chemical and physical attributes of the lake, with the goal being to generate a database that can be used to better understand the interactions defining the Sleepy Hollow Lake ecosystem.

The data collection and investigation phase includes:

  • Watershed Investigation: an in-depth assessment of the major and minor tributaries and road network in order to identify areas of stream bank and ditch erosion; sources of both sediment and nutrient loading to the lake
  • Bathymetric Survey: the accurate mapping of water depths and the quantification of the amount of accumulated, unconsolidated sediment present in the lake
  • Fisheries & Food Web Study: the collection of fish and plankton data for the purpose of creating a comprehensive fisheries management program focused on managing the lake’s outstanding fishery, further promoting the ecological balance of the lake, and enhancing lake water quality
  • Aquatic Plant Mapping: the development of detailed maps identifying the plant species present in the lake along with their relative abundance and distribution throughout the lake, but especially within the shallower coves
  • Hydrologic & Pollutant Budget: the computation of the lake’s hydrologic budget and pollutant loading budget. The hydrologic budget represents the water balance of the lake and is an estimate of all of the inputs and losses of water. The pollutant budget represents an estimate of the amount of nitrogen and phosphorus entering the lake from various sources. These data are used to evaluate the effectiveness of lake management options, enabling us to determine the best, most ecologically sound and most cost-effective approach to protect and improve the lake’s water quality now and into the future.

Princeton Hydro is now in the process of utilizing all of the data developed during the investigation phase of the project to create a comprehensive Lake Management Plan that will be used to guide the APO’s future lake restoration and protection initiatives. The Lake Management Plan and supporting data will also be used by Princeton Hydro on behalf of the APO to seek grant funding for various lake and watershed restoration projects.

Princeton Hydro is also overseeing the aquatic plant management program at Sleepy Hollow Lake, the focus of which is to control invasive plant species in a manner consistent with and complimentary of the lake’s overall ecological enhancement.

Truesdale Lake

At Truesdale Lake, Princeton Hydro is working with the Truesdale Lake Property Owners Association (TLPOA) to develop a comprehensive Lake Management Plan. The Plan provides a detailed project implementation roadmap for TLPOA, including recommendations for priority ranking of particular activities and restoration measures. A key element of the Plan are the short-term (1-year) and long-term (5-year) water quality and problematic algae and invasive aquatic plant control goals. Another highlight of the Plan is the review of Federal, State, County and local grants, programs and initiatives that may provide funding for identified lake and watershed projects.

During the Plan’s development, Princeton Hydro has provided the TLPOA with lake management consultation services such as community education initiatives, the coordination of NYSDEC permitting activities associated with the implementation of lake restoration measures, and the oversight and administration of an aquatic weed management program at the lake.

Earlier this year, Truesdale Lake experienced excessive aquatic weed growth, which significantly reduced the water quality, recreational use and aesthetics of the lake. Princeton Hydro utilized its Truxor, an eco-friendly, amphibious machine, to cut and remove the nuisance weed growth from the lake. This program helped reduce the negative impacts to the lake and lake users caused by the dense weed growth. Future use of the Truxor to remove invasive weeds is already part of the long-term Lake Management Plan for TLPOA. The Truxor will be used in concert with other measures to control invasive weed growth and restore a more balanced native aquatic plant community.

For more information about Princeton Hydro’s work in the Hudson River Valley or to discuss your project goals, please contact us.