Understanding and Implementing Green Infrastructure

By Tucker Simmons and Dr. Clay Emerson, PE, CFM

People generally think of green infrastructure as an eco-friendly way to handle stormwater runoff. While many green infrastructure elements are planned and managed specifically for stormwater control, the capabilities and benefits are far reaching. In this piece, we’ll provide an in-depth look at all that green infrastructure encompasses, best practices, and real-world examples of green infrastructure projects in action.

WHAT IS GREEN INFRASTRUCTURE?

Defined as an approach to water management that protects, restores, or mimics the natural water cycle, green infrastructure can be implemented for large scale projects and small scale projects alike.

Unlike conventional, or “gray” infrastructure, green infrastructure uses vegetation, soil, and other natural components to manage stormwater and generate healthier urban environments. Green infrastructure systems mimic natural hydrology to take advantage of interception, evapotranspiration and infiltration of stormwater runoff at its source. Examples include permeable pavers, rain gardens, bioretention basins, rain barrels, and tree boxes.

WHY IS GREEN INFRASTRUCTURE BENEFICIAL?

Green infrastructure provides various benefits, including cleaning and conserving water, reducing flooding, improving public health, providing jobs, beautifying neighborhoods, supporting wildlife and providing economic benefits at both the larger community and individual household level. Let’s take a closer look at some of the primary benefits:

Prevents Flooding: By absorbing and slowing the flow of water, green infrastructure can reduce the burden on storm sewer systems and mitigate localized flooding.

Saves Money: While some green infrastructure designs may require the same or greater initial investment than conventional strategies, green design methods provide a big return in reducing costs over the long-term.

Improves Water Quality: Through natural absorption and filtration processes, green infrastructure significantly reduces stormwater runoff volume, decreases the pollutants and particulates within the stormwater, and improves the quality of the runoff flowing into surrounding water bodies.

Improves Air Quality: Green infrastructure techniques like tree boxes, green roofs and vegetative barriers have long been associated with improving air quality. Urban tree boxes help shade surfaces, effectively putting moisture into the air while reducing greenhouse gases. Trees mitigate heat and air pollution, both cooling and cleaning the air.

Enhances Aesthetics: Many green infrastructure practices utilize native plants and trees to improve runoff absorption and reduce stormwater pollution. This vegetation can provide a sound barrier or privacy screen for properties, and enhances the overall aesthetics of the surrounding environment. 

Increases Property Values: Research shows that property values increase when trees and other vegetation are present in urban areas. Planting trees can increase property values by as much as 15%.

LARGE-SCALE GREEN INFRASTRUCTURE IMPLEMENTATION:

With the use of proper design techniques, green infrastructure can be applied almost anywhere and is especially beneficial in urban areas. In developed environments, unmanaged stormwater creates two major issues: one related to the volume and timing of stormwater runoff (flooding) and the other related to pollutants the water carries. Green Infrastructure in urban environments can recharge groundwater, decrease runoff, improve water quality, and restore aquatic habitats while controlling flooding.

Across the United States, more than 700 cities utilize combined sewer systems (CSS) to collect and convey both sanitary sewage and stormwater to wastewater treatment facilities. During dry weather, all wastewater flows are conveyed to a sewage treatment plant where it receives appropriate treatment before it is discharged to the waterway. However, during heavy rainfall or significant snowmelt, the additional flow exceeds the capacity of the system resulting in a discharge of untreated sewage and stormwater to the waterway; this discharge is referred to as a combined sewer overflow (CSOs). For many cities with CSS, CSOs remain one of the greatest challenges to meeting water quality standards. Green infrastructure practices mimic natural hydrologic processes to reduce the quantity and/or rate of stormwater flows into the CSS.

New Jersey, as part of the 2012 USEPA’s Integrated Municipal Stormwater and Wastewater Planning Approach Framework, utilized green infrastructure as one of the main components in managing its CSS and reducing CSOs. Because of the flexibility of green infrastructure in design performance, it can reduce and mitigate localized flooding and sewer back-ups while also reducing CSOs. An integrated plan that addresses both overflows and flooding can often be more cost-effective than addressing these issues separately. New Jersey, in addition to meeting its CSO reduction goals, is using green infrastructure throughout the sewershed to build resilience to large storm events and improve stormwater management.

Stormwater planters installed by the Philadelphia Water Department

Philadelphia takes advantage of numerous green stormwater infrastructure programs such as Green Streets, Green Schools, and Green Parking. There are a wide variety of green infrastructure practices that Philadelphia is using to decrease stormwater runoff throughout the entire city. After just five years of implementing the Green City, Green Waterplan, Philadelphia has reduced the stormwater pollution entering its waterways by 85%. Using over 1,100 green stormwater tools (i.e. CSO, living landscapes, permeable surfaces, etc.), in just one year, Philadelphia was able to prevent over 1.7 billion gallons of polluted water from entering their rivers and streams.

New York City is using a green infrastructure program, led by its Department of Environmental Protection, that utilizes multiple green infrastructure practices to promote the natural movement of water while preventing polluted stormwater runoff from entering sewer systems and surrounding waterbodies. While attaining this goal, the green infrastructure also provides improvements in water and air quality, as well as improves the aesthetics of the streets and neighborhoods. According to the NYC Green Infrastructure Plan, “By 2030, we estimate that New Yorkers will receive between $139 million and $418 million in additional benefits such as reduced energy bills, increased property values, and improved health.”

SMALL-SCALE GREEN INFRASTRUCTURE IMPLEMENTATION:

Green infrastructure techniques are extremely beneficial on every scale. Residential homes and neighborhoods can benefit from the implementation of green infrastructure in more ways than many people realize. There are a wide variety of green infrastructure projects that can be completed with a relatively small time and financial investment. Many of us at Princeton Hydro have incorporated green infrastructure practices into our homes and properties. Here’s a look at some of those projects in action:

Dr. Steve Souza, a founding principal of Princeton Hydro, installed rain gardens throughout his property utilizing native, drought-resistant, pollinator-attracting plants. The rain gardens are designed to capture and infiltrate rainwater runoff from the roof, driveway, patio and lawn.

Princeton Hydro’s President Geoffrey Goll, P.E. built an infiltration trench in his backyard. An infiltration trench is a type of best management practice (BMP) that is used to manage stormwater runoff, prevent flooding and downstream erosion, and improve water quality in adjacent waterways. 

And, in the front yard, Geoffrey installed a variety of wildflower plantings.

MUNICIPAL TOOLKIT

An interactive website toolkit was recently launched by New Jersey Future to help municipalities across the state incorporate green infrastructure projects into their communities. For this project, Princeton Hydro’s engineers and scientists provided real-world examples integrating green infrastructure into development in order to bring to light the benefits and importance of investing in green infrastructure at the local level. The New Jersey Green Infrastructure Municipal Toolkit provides expert information on planning, implementing, and sustaining green infrastructure to manage stormwater. This toolkit acts as a one-stop resource for community leaders who want to sustainably manage stormwater, reduce localized flooding, and improve water quality.

GET STARTED

Since its inception, Princeton Hydro has been a leader in innovative, cost-effective, and environmentally sound stormwater management systems. Long before the term “green infrastructure” was part of the design community’s lexicon, the firm’s engineers were integrating stormwater management with natural systems to fulfill such diverse objectives as flood control, water quality protection, and pollutant reduction. Princeton Hydro has developed regional nonpoint source pollutant budgets for over 100 waterways. The preparation of stormwater management plans and design of stormwater management systems for pollutant reduction is an integral part of many of the firm’s projects.

Interested in working with us on your next Green Infrastructure project? Contact us here.


Tucker Simmons, Water Resources Intern

Tucker is a Civil and Environmental Engineering major at Rowan University focusing on Water Resources Engineering. He is the President and player of the Rowan University Men’s DII Ice Hockey Team. His Junior Clinic experience includes the study of Bio-Cemented sand and the Remote Sensing of Landfill Fires. In the future, Tucker hopes to work on creating a more sustainable environment. Tucker enjoys playing ice hockey, being with friends and family, and exercising.

 

Clay Emerson, Senior Project Manager

Clay’s areas of expertise include hydrologic and hydraulic analysis, stormwater management and infiltration, nonpoint source (NPS) pollution, watershed modeling, groundwater hydrology/modeling, and water quality and quantity monitoring at both the individual site and watershed scales. His educational and work experience includes a substantial amount of crossover between engineering and environmental science applications. He has specific expertise in the field of stormwater infiltration and has conducted extensive research on the NPS pollution control and water quantity control performance of stormwater BMPs. He regularly disseminates his monitoring results through numerous peer-reviewed journal publications, magazine articles, and presentations.

 

Two-Part Blog Series: Flood Assessment, Mitigation & Management

In this two part blog series, we showcase our work in the Moodna Creek Watershed in order to explore some of the concepts and methods used to estimate flood risk for existing conditions and the year 2050 and develop a flood management strategy (Part One), and traditional engineering and natural systems solutions used to manage and reduce flood risk (Part Two).

Part One: Flood Assessment & Mitigation Analysis in the Moodna Creek Watershed

The greater Moodna Creek watershed covers 180 square miles of eastern Orange County, NY. The watershed includes 22 municipalities and hundreds of streams before joining the Hudson River. This region has seen tremendous growth in recent years with the expansion of regional transit networks and critical infrastructure.

The Moodna Creek watershed can be split into two sub-basins — the Upper Moodna Creek and the Lower Moodna Creek. In the span of 15 months, Hurricane Irene, Tropical Storm Lee, and Hurricane Sandy each have caused significant flooding throughout the Moodna Creek watershed, damaging public facilities, roadways, and private properties. Both sub-basin communities have noted a concern about increased flood risk as more development occurs.

As global temperatures rise, climate models are predicting more intense rainfall events. And, the flood risk for communities along waterways — like the Moodna Creek watershed — will likely increase as time passes. In order to understand existing and future risk from flood events in this flood-prone area, a flood risk management strategy needed to be developed. The strategy uses a cost-benefit analysis to review the feasibility of each measure and the overall impact in reducing flood risks.

With funds provided from a 2016 grant program sponsored by the New England Interstate Waters Pollution Control Commission (NEIWPCC) and the New York State Department of Environmental Conservation’s (NYCDEC) Hudson River Estuary Program (HEP), Princeton Hydro along with a variety of project partners completed a flood assessment and flood mitigation analysis specific to the Lower Moodna Creek watershed.

Let’s take a closer look at our work with the Lower Moodna Creek watershed, and explore some of the methods used to estimate flood risk and develop a flood management strategy:

Lower Moodna Creek Watershed Flood Assessment & Analysis

The primary Lower Moodna Creek project goals were to assess flood vulnerabilities and propose flood mitigation solutions that consider both traditional engineering strategies and natural systems solution approaches (land preservation, wetland/forest restoration, green infrastructure and green water management). The project team focused on ways to use the natural environment to reduce risk.  Instead of strictly focusing on just Moonda Creek, the team took a holistic approach which included all areas that drain into the river too. These analyses were incorporated into a Flood Assessment Master Plan and Flood Mitigation Plan, which will serve as a road map to reducing flooding issues within the watershed.

Managing Flood Risk

The first step in managing flood risk is to understand what type of exposure the communities face. The Moodna Creek project modeled flooding within the watershed during normal rain events, extreme rain events, and future rain events with two primary goals in mind:

Visual assessment being conducted in flood-prone areas of Moodna Creek Watershed.

  • Assess the facilities, infrastructure, and urban development that are at risk from flooding along the Moodna Creek and its tributaries within the study area.
  • Develop a series of hydrologic and hydraulic models to assess the extent of potential flooding from the 10-year (10%), 100-year (1%),  and 500-year (0.2%) storm recurrence intervals within the study area. The modeling includes flows for these storm events under existing conditions and also hypothetical scenarios with predicted increases in precipitation and population growth.

 

The project team used these models and data to propose and evaluate a series of design measures that help reduce and mitigate existing and anticipated flood risk within the study area. Where possible, the proposed solutions prioritized approaches that protect and/or mirror natural flood protection mechanisms within the watershed such as floodplain re-connection and wetland establishment. In addition to flood protection, the project components also provide water quality protection, aesthetics and recreation, pollutant reduction, and wildlife habitat creation.

Land Use and Zoning

Zoning is a powerful tool that determines a region’s exposure to hazards and risk. Zoning determines which uses are permitted, or encouraged, to be built in moderate and high-risk areas. It also prevents certain uses, such as critical facilities, from being built in those areas. Zoning is also a determinant of a region’s character and identity.

In the Lower Moodna Creek watershed, a large majority (82%) of land is zoned for residential use. However, in the flood-prone areas, there is a higher ratio of areas zoned for non-residential uses (commercial, industrial) than in areas that are zoned for potential future development. Specifically, within the 10-year storm recurrence floodplain, 30% of the land is zoned for industrial use. This is likely because several facilities, such as wastewater treatment plants and mills, require access to the river and were strategically developed to be within immediate proximity of waterfront access. The Lower Moodna zoning analysis demonstrated a general preference within watershed to limit residential use of flood-prone areas. 

Land Preservation

Preserving land allows for natural stormwater management, as well as limits the exposure of development, and minimizes sources of erosion within the watershed. Preserved land also maintains the hydrologic and ecologic function of the land by allowing rainwater to be absorbed or retained where it falls and thus minimizing run-off. If the land within the floodplain is preserved, it will never be developed, and therefore the risk — a calculation of rate exposure and the value of the potential damage — is eliminated.  Therefore, land preservation, both within the floodplains and in upland areas, is the best way to minimize flood damage.

Conserved riparian areas also generate a range of ecosystem services, in addition to the hazard mitigation benefits they provide. Protected forests, grasslands, and wetlands along rivers and streams can improve water quality, provide habitat to many species, and offer a wide range of recreational opportunities. Given the co-benefits that protected lands provide, there is growing interest in floodplain conservation as a flood damage reduction strategy.

Within the mapped Lower Moodna floodplains, our assessment determined that there appears to be a slight priority for preserving land most at-risk for flooding. This is likely a consequence of prioritizing land that is closest to riparian areas and preserving wetland areas, which are the most likely to experience flooding. Within the floodplains for the 10-year storm, approximately 22.7% is preserved. For the 100-year storm, approximately 21.2% of the land is preserved. Within the 500-year storm, this number drops slightly to 20.3%. These numbers are so close in part because the difference between the 10-year, 100-year, and 500-year floodplains are small in many areas of the watershed.

Hydrology and Hydraulics

Hydrology is the scientific study of the waters of the earth, with a particular focus on how rainfall and evaporation affect the flow of water in streams and storm drains. Hydraulics is the engineering analysis of the flow of water in channels, pipelines, and other hydraulic structures. Hydrology and hydraulics analyses are a key part of flood management.

As part of this flood assessment, Princeton Hydro created a series of hydrologic and hydraulic (H&H) models to assess the extent of potential flooding from the 10-year, 100-year, and 500-year storm recurrence intervals within the Lower Moodna. The modeling, which included flows for these storm events under existing conditions and future conditions based on predicted increases in precipitation and population growth, makes it easier to assess what new areas are most impacted in the future.

These are just a few of the assessments we conducted to analyze the ways in which flooding within the watershed may be affected by changes in land use, precipitation, and mitigation efforts. The flood models we developed informed our recommendations and proposed flood mitigation solutions for reducing and mitigating existing and anticipated flood risk.

Stay tuned for Part Two of this blog series in which we will explore flood risk-reduction strategies that include both traditional engineering and natural systems solutions. For more information about Princeton Hydro’s flood management services, go here: http://bit.ly/PHfloodplain.

 

Deal Lake Commission Wins Award For “Lake Management Success”

NALMS President Dr. Frank Browne with Princeton Hydro Co-Founder Dr. Stephen Souza accepting the “Lake Management Success Stories” award on behalf of the Deal Lake Commission.

The Deal Lake Commission’s success in the management and restoration of Deal Lake garners a prestigious award from the North American Lake Management Society

 

The North American Lake Management Society (NALMS) awarded the Deal Lake Commission (DLC) with its “2018 Lake Management Success Stories” award. The award, which was presented at the NALMS 38th International Symposium, is given annually to recognize and honor an individual or group that has made significant lake/reservoir management accomplishments.

The DLC has overseen the management and restoration of Deal Lake and its watershed since 1974. Consisting of appointees from the seven municipalities abutting the lake, the DLC’s mission is to provide leadership, guidance and resources to preserve and restore Deal Lake and its tributaries as a healthy and stable ecosystem. A true challenge in an urban environment.

“It has been both a pleasure and an honor to work with the Deal Lake Commission for the past 35 years,” said Dr. Stephen Souza, Princeton Hydro Co-Founder. “They have shown great resolve to tackle some serious problems affecting the lake and its watershed, serving as a great example for other organizations involved in the restoration of urban lakes.”

Deal Lake is New Jersey’s largest coastal lake, encompassing 162 acres. The lake is surrounded by a 4,400-acre highly urbanized watershed, with the majority of development dating back to the 1960s-1980s. As a result, stormwater management, particularly with respect to water quality and volume management can be especially challenging. The DLC has embraced the numerous challenges, and has worked diligently over the years to correct these issues.

Restored shoreline at the Asbury Park Boat Launch in Deal LakeAt the forefront, the DLC has been managing the primary cause of the lake’s eutrophication: stormwater runoff from the surrounding watershed. In 2014, with funding provided through the NJDEP’s 319(h) program, the DLC implemented a number of demonstration projects, specifically the construction of three bioretention basins, the installation of a large manufactured treatment device, the vegetative stabilization of over 500 feet of heavily eroded sections of the shoreline, and the construction of a rain garden at the Deal Lake boat launch.

Collectively these projects were shown to eliminate localized flooding, decrease floatable loading, and reduce nutrient, sediment and pathogen inputs to the lake. These and other projects implemented by the DLC over the years show that despite Deal Lake being located in a highly urbanized watershed, it is possible to implement cost-effective green infrastructure and stormwater retrofit solutions.

Deal Lake recently won another very competitive 319 (h) program for $735,000 for MTDs, tree boxes, and Green infrastructure improvements to Deal Lake, Sunset Lake and Wesley Lake.

The NALMS award nomination application, which was submitted by Dr. Souza, listed a number of additional achievements of the DLC, including:

  • Educating the community, including school children, to increase awareness and appreciation for the natural environment of the lake;
  • Sponsoring and conducting public engaged spring and fall cleanups, which annually result in the removal of 1,000s of pounds of refuse and debris from the lake;
  • Helping homeowners and public groups recognize and mindfully solve problems related to water quality, siltation, and lake restoration;
  • Serving as the liaison between lakeside communities, County agencies, and the NJDEP;
  • Microbial source tracking investigations with Monmouth University and pathogen source identification work with Clean Ocean Action to decrease E. coli loading;
  • Carp removal, invasive species management, and goose control initiatives;
  • Working with State legislators to implement stricter stormwater controls to reduce pollutant loading, increase storm resiliency, and improve recreational fishing;
  • Participating in the NALMS Secchi Dip In; and
  • Proactively suggesting and supporting community-based, practical ideas to improve the overall environmental quality of the lake and its enjoyment by boaters, anglers, hikers, residents and visitors.

For more information on the Deal Lake Commission, visit DealLake.org.

The successful, long-term improvement of a lake or pond requires a proactive management approach that addresses the beyond simply reacting to weed and algae growth and other symptoms of eutrophication. Our staff can design and implement holistic, ecologically-sound solutions for the most difficult weed and algae challenges. Visit our website to learn more about Princeton Hydro’s lake management services: http://bit.ly/pondlake.

New Green Infrastructure Toolkit for Municipalities

Our partner, New Jersey Future, just launched a brand new, interactive website toolkit to help municipalities across the state incorporate green infrastructure projects into their communities. The New Jersey Green Infrastructure Municipal Toolkit will provide expert information on planning, implementing, and sustaining green infrastructure to manage stormwaterThis toolkit acts as a one-stop resource for community leaders who want to sustainably manage stormwater, reduce localized flooding, and improve water quality.

According to the United States EPA, a significant amount of rivers, lakes, ponds, bays, and estuaries in New Jersey fall into the “Impaired Waters” category, meaning that one or more of their uses are not being met. This reality makes green infrastructure more important than ever in the effort to protect our waterways. When it rains, stormwater creates runoff, which often carries pollution to various types of waterbodies. Green stormwater infrastructure helps to absorb and filter rainwater, reducing the pollution entering our waterways and mitigating flooding in our communities. In urban areas, green infrastructure utilizes natural vegetation to divert stormwater, creating a cost-effective and aesthetically-pleasing way to manage water during rain events.

“We designed this toolkit to bring to light the benefits and importance of investing in green infrastructure at the local level,” said Dr. Stephen Souza, co-founder of Princeton Hydro. “Since the current NJ stormwater rules do not require green infrastructure, we hope to inspire municipal engineers and planning board members to believe in the value through our toolkit. Additionally, we hope it will serve as an educational resource to local officials and decision makers in the Garden State.”

For this project, Princeton Hydro was contracted by Clarke Caton Hintz, an architecture, design, and planning firm, leading this effort on behalf of the nonprofit organization New Jersey Future. Our expert engineers and scientists provided real-world examples integrating green infrastructure into development, in hopes of showing those using the toolkit real world evidence of how green infrastructure can be a part of the daily lexicon of stormwater management. Additionally, Dr. Stephen Souza developed performance standards that municipalities can integrate into stormwater management plans, which are available in the Green Infrastructure Municipal Toolkit.

November Events Spotlight: Conferences Throughout the Country

Princeton Hydro is participating in a variety of conferences taking place throughout the country that address topics ranging from lake management to green infrastructure resiliency:

October 30 – November 2: North American Lake Management Society (NALMS) Conference

NALMS is hosting its 38th International Symposium in Cincinnati Ohio, titled “Now Trending: Innovations in Lake Management.” This year’s symposium includes a robust exhibit hall, a variety of field trips, and a wide array of presentations on topics ranging from the latest in monitoring technologies to combating invasive species to nutrient and water quality management and more. Princeton Hydro’s Dr. Fred Lubnow, Director of Aquatic Programs, and Dr. Stephen Souza, Founder, both of whom have been members of NALMS since its inception, are presenting and exhibiting during the conference.

LEARN MORE

 

October 31 – November 2: Society for American Military Engineers (SAME) Small Business Conference (SBC)

SAME gives leaders from the A/E/C, environmental, and facility management industries the opportunity to come together with federal agencies in order to showcase best practices and highlight future opportunities for small businesses to work in the federal market. Princeton Hydro is proud to be attending the 2018 SAME SBC Conference, which is being held in New Orleans and co-locating with the Department of Veteran’s Affairs’ National Veterans Small Business Engagement. The program consists of networking events, small business exhibits, a variety of speakers and much more.

LEARN MORE & REGISTER

 

November 2: The 2nd Annual New Jersey Watershed Conference

We are a proud sponsor of this year’s New Jersey Watershed Conference, which is an educational event that aims to advance knowledge and communications on issues related to water quality and quantity across the state. The agenda features a variety of presentations from local experts on watershed management, stormwater, green infrastructure, and the problems and solutions related to the health of our watersheds. Princeton Hydro is exhibiting & our Marketing Coordinator, Kelsey Mattison, is leading a workshop on “How Social Media can be a Champion for your Watershed.”

LEARN MORE & REGISTER

 

November 4 – 8: 2018 American Water Resources Association Conference

The AWRA’s 53rd Annual Water Resources Conference is being held in Baltimore, MD. Community, conversations and connections are highlights of every AWRA conference and the 2018 conference will provide plenty of opportunities for all three, including an exhibitor hall, networking events, and variety of presentations and technical sessions. Princeton Hydro’s Christiana Pollack, GISP, CFM is giving a presentation on flood assessment and mitigation. 

LEARN MORE & REGISTER

 

November 8 – 10: Engineers Without Borders (EWB) USA Conference

The EWB, a nonprofit humanitarian organization that partners with developing communities worldwide in order to improve their quality of life, is hosting its USA National Conference in San Francisco.  The ​annual ​conference ​will ​address ​the ​theme ​“Engineers Unlock Potential.” ​Experts, ​practitioners, ​decision-makers, ​young ​professionals ​and ​students ​from ​a ​range ​of ​sectors ​will come together to network, exchange ideas, foster new thinking and develop solutions to the world’s most pressing infrastructure ​challenges. Princeton Hydro Staff Engineer Natalie Rodrigues, EIT, CPESC-IT, a EWB member, is attending the conference and presentation. Her session, titled “So You Think You Might Like to be an EWB Regional Officer or State Representative, ” is designed for those interested in taking the next step beyond Chapter or Project participation at EWB-USA, as well as for current Regional Steering Committee members who want to “amp up” their game.

LEARN MORE & REGISTER

 

November 13: Society for American Military Engineers (SAME) Philadelphia Resiliency Symposium

SAME Philadelphia is hosting an all day symposium featuring experts on infrastructure resiliency in the face of extreme storms, flooding and other natural disasters. Presentation topics include, Flood Hazard Risk and Climate Change Effects for Bulk Oil Storage Facilities; Post-Storm Infrastructure Improvements and Stream Restoration; and Resilience Risk Analysis and Engineering. Princeton Hydro President Geoffrey Goll, P.E. is giving a presentation titled, “Enhancing Coastal Habitat & Increasing Resiliency through Beneficial Reuse of Dredged Material in New Jersey.” We hope to see you there!

LEARN MORE & REGISTER

 

November 16: NJ Chapter American Water Resources Association (NJ-AWRA) Future Risk Symposium

As the frequency and intensity of storm events changes, how should watershed managers, engineers, and planners make informed decisions for the future? NJ-AWRA’s 2018 Future Risk Symposium, held at Duke Farms in Hillsborough, NJ, will focus on Future Flooding in Riverine Systems with presentations on climate trends, modeling, and planning that can be used in NJ to prepare for future flood events in New Jersey’s riverine systems. Princeton Hydro’s Christiana Pollack, GISP, CFM is giving a presentation on flood assessment, and the concepts and methods used to estimate flood risk for existing conditions and the year 2050.

LEARN MORE & REGISTER

 

STAY TUNED FOR MORE EVENT SPOTLIGHTS!

Conservation Spotlight: Dunes at Shoal Harbor Shoreline Protection

Hurricane Sandy was the largest storm to ever originate in the Atlantic ocean. It badly damaged several countries in the Caribbean, caused over $50 billion in damages along the Eastern Seaboard, and left dozens dead. While hurricanes are a natural part of our climate system, research shows that intense hurricane activity has been on the rise in the North Atlantic since the 1970s. This trend is likely to be exacerbated by sea level rise and growing populations along coastlines. Natural coastal habitats — like wetlands and dunes — have proven to shield people from storms and sea-level rise, and have protected coastal communities from hundreds of millions of dollars in damage.

The Dunes at Shoal Harbor, a residential community in Monmouth County, New Jersey, is situated adjacent to both the Raritan Bay and the New York City Ferry channel. The site, previously utilized for industrial purposes, consisted of a partially demolished docking/berthing facility. A significantly undersized 6” diameter, 8-foot long stone revetment was also constructed on the property.

During Hurricane Sandy, the revetment failed and the community was subjected to direct wave attack and flooding. Homes were damaged, beach access was impaired, and the existing site-wide stormwater management basin and outfall was completely destroyed.

Princeton Hydro performed a wave attack analysis commensurate with a category three hurricane event, and used that data to complete a site design for shoreline protection. Consistent with the analysis, the site design includes the installation of a 15-foot rock revetment (one foot above the 100-year floodplain elevation) constructed with four-foot diameter boulders. The project also consists of replacing a failed elevated timber walkway with a concrete slab-on-grade walkway, restoring portions of the existing bulkhead, clearing invasive plants, and the complete restoration of the failed stormwater basin and outlet.

A rendering of the “Dunes at Shoal Harbor” shoreline protection design by Princeton Hydro.

The plan incorporates natural barriers to reduce the impacts of storm surges and protect the coastal community, including planting stabilizing coastal vegetation to prevent erosion and installing fencing along the dune to facilitate natural dune growth.

These measures will discourage future erosion of the shoreline, protect the residential community from future wave attacks and flooding, and create a stable habitat for native and migratory species.  The project is currently in the permitting phase, and will move to construction when all permits are obtained from local, state, and federal agencies.

This project is an great example of Princeton Hydro’s ability to coordinate multi-disciplinary projects in-house. Our Water Resources Engineering, Geosciences Engineering, and Natural Resources teams have collaborated efficiently to analyze, design, and permit this shoreline protection project. For more information on our engineering services, go here.

“Floating Classroom” Launches into Lake Hopatcong

The Lake Hopatcong Foundation (LHF) recently launched its newest initiative – a floating classroom. The custom-built 40-foot education vessel, named ‘Study Hull’, gives students an interactive, hands-on education experience to explore Lake Hopatcong, learn about freshwater ecology, and learn how to protect the watershed.

During its maiden voyage field trip, which was held on May 21, fourth-graders from Nixon Elementary and Kennedy Elementary schools utilized the boat’s laboratory instruments to study water hydrology, temperatures, plankton, and dissolved oxygen levels. They performed a series of tests and experiments designed to help them learn about the general health of the lake. They used Secchi Disks to determine the depth to which light is able to penetrate the water’s surface. They also learned about runoff and nonpoint source pollutants, how to protect the lake’s water quality, and how to be good stewards of the water.

Princeton Hydro helped the LHF design a teaching curriculum on water quality.  Dr. Jack Szczepanski, Senior Aquatics Scientist, and Christopher L. Mikolajczyk, CLM, Senior Project Scientist, trained the staff and volunteers on the curriculum and demonstrated various water quality monitoring techniques that can be conducted with the students.

“We’re really proud to be a part of this exciting initiative,” said Mikolajczyk. “It’s really important to get kids interested in science at an early age and teach them about their surrounding environment – where their drinking water comes from, how it gets polluted, the impacts pollution has on the lake’s ecosystem, and what steps can be made to protect the lake’s water quality. We’re hoping the floating classroom field trip program will make a lasting, valuable impression with these kids.”

In the first year of operation it is expected that the Study Hull will host 1,000 fourth grade students. The long-term goal is to develop lesson plans for students in every grade from kindergarten through high school. Starting in July, the LHF is also offering the public tours of the floating classroom on Mondays at Hopatcong State Park.

The purchase of the floating classroom was made possible by financial support from USATODAY Network’s “A Community Thrives” program, which awarded the LHF with a $50,000 grant. The program recognizes three categories: arts and culture, education, and wellness. In each category, the first place winner received a $100,000 grant and the second and third place winners received $50,000 grants. The James P. Verhalen Family Foundation and the Szigethy Family also provided significant donations to help bring the floating classroom to life.

 

The LHF and Princeton Hydro are longtime partners. Starting back in 1983, Princeton Hydro’s Dr. Stephen Souza conducted the USEPA funded Diagnostic Feasibility study of the lake and then authored the Lake Hopatcong Restoration Plan. That document continues to be the backbone of why and how to restore the lake, manage the watershed, reduce pollutant loading, and address invasive aquatic plants and nuisance algae blooms.

Lake Hopatcong has one of the longest, continuous, long-term ecological databases in New Jersey; almost 30 years of consistently collected water quality data. The data is crucial in assessing the overall ecological health of the lake and proactively guiding its management, identifying and addressing emerging threats, documenting project success (a mandatory element of funding initiatives) and confirming compliance with New Jersey State Water Quality standards.

Princeton Hydro’s most recent work for Lake Hopatcong includes the implementation of green infrastructure stormwater management measures, installation of floating wetland islands to improve water quality, and invasive aquatic plant species management programs, community educational training, and surveys.

For more information about the Lake Hopatcong Foundation or the floating classroom, click here. For more information about Princeton Hydro’s lake management services, go here.

Volunteers Pitch In at New Jersey’s Thompson Park

A volunteer effort, lead by the Middlesex County, New Jersey Parks and Recreation Department and the Rutgers Cooperative Extension, recently took place at Thompson Park.

Despite the rainy weather, 78 volunteers and members of the Youth Conservation Corps removed litter from the shoreline of Manalapan Lake, repaired fencing, made improvements to the park’s walking trails, weeded and mulched the park’s rain garden and native plant garden, and installed new plants in the rain garden.

The park’s rain garden was originally designed by Princeton Hydro Senior Water Resource Engineer Dr. Clay Emerson, PE, CFM. Rain gardens are cost effective, attractive and sustainable means to minimize stormwater runoff. They also help to reduce erosion, promote groundwater recharge, minimize flooding and remove pollutants from runoff.

By definition, a rain garden is a shallow depression that is planted with deep-rooted native plants and grasses, and positioned near a runoff source to capture rainwater. Planting native plants also helps to attract pollinators and birds and naturally reduces mosquitos by removing standing water thus reducing mosquito breeding areas.

Rain gardens temporarily store rainwater and runoff, and filter the water of hydrocarbons, oil, heavy metals, phosphorous, fertilizers and other pollutants that would normally find their way to the sewer and even our rivers and waterways.

On the day of the volunteer event, Central New Jersey received 0.44 inches of rain.  “We got to see the rain garden in action, which was really exciting,” said Princeton Hydro Senior Project Manager Kelly Klein, who volunteered at the event.

Volunteers from the following organizations participated:

  • Edison Metro Lions Club
  • Hioki USA Corporation
  • Girl Scout Troop 70306
  • East Brunswick Youth Council
  • Monroe Middle School
  • South Plainfield High School
  • Rutgers University
  • Master Gardeners of Middlesex County
  • Foresters Financial
  • Princeton Hydro

The Middlesex County Parks and Recreation Department’s next public volunteer event is tomorrow (June 2) in Davidson’s Mill Pond Park.

The Princeton Hydro team has designed and constructed countless stormwater management systems, including rain gardens in locations throughout the Eastern U.S. Click here for more information about our stormwater management services.

Princeton Hydro Supports Creation of Stormwater Utilities in New Jersey

For Immediate Release: May 15, 2018

PRESS STATEMENT 

On behalf of Princeton Hydro, LLC, a leading water resources engineering and natural resource management small business firm in New Jersey, we support the passing of New Jersey’s stormwater utility creation bill, S-1073. If S-1073 is administered in a responsible manner, we believe that it will enhance water quality and reduce flooding impacts in New Jersey.

Since our inception, Princeton Hydro has been a leader in innovative, cost-effective, and environmentally sound stormwater management. Long before the term “green infrastructure” was part of the design community’s lexicon, our engineers were integrating stormwater management with natural systems to fulfill such diverse objectives as flood control, water quality protection, and pollutant reduction. Our staff has developed regional nonpoint source pollutant budgets for over 100 waterways. The preparation of stormwater management plans and design of stormwater management systems for pollutant reduction is an integral part of many of our projects.

We have seen the benefits of allowing for stormwater utilities firsthand. In Maryland, the recently implemented watershed restoration program and MS4 efforts that require stormwater utility fees have provided a job creating-industry boom that benefits engineers, contractors, and local DPWs. At the same time, Maryland’s program is improving the water quality in the Chesapeake Bay, and stimulating the tourism and the crabbing/fishing industry.

New Jersey has the very same issues with our water resources as Maryland. Just like the Chesapeake Bay, our Barnegat Bay, Raritan Bay, and Lake Hopatcong have serious issues with stormwater runoff that is degrading our water quality and quality of life.  Our stormwater infrastructure is old and falling apart, and all stormwater utilities need continual maintenance to save money in the long run.

It is important to point out that this current bill is not a mandatory requirement, and would simply provide a mechanism for various levels of government (county, municipality, etc.) to collect a stormwater utility fee in order to recover runoff management costs.

This bill (S-1073) should not be reviewed only in the context of cost, as this bill meets all three elements of the  triple-bottom line of sustainability; social, environmental, and financial. Allowing stormwater utilities in New Jersey will create jobs, help reduce flood impacts, enhance water quality, improve our fisheries, and preserve our water-based tourism economy. 40 states have already implemented stormwater utilities, and we believe that it is time for New Jersey to join the ranks.

###

Princeton Hydro’s Cory Speroff Achieves Chesapeake Bay Landscape Professional Status

Princeton Hydro is proud to announce that Cory Speroff, MLA, ASLA, CBLP, Landscape Designer for the firm, has earned the Chesapeake Bay Landscape Professional (CBLP) designation.

The achievement of the CBLP Level 1 designation demonstrates an advanced level of professionalism and knowledge of sustainable landscaping practices for a healthier Chesapeake Bay and beyond. In order to qualify for the certification, candidates must pass a comprehensive exam that assesses an individual’s understanding of sustainable practices in the design, installation, and maintenance of landscapes. Achieving the CBLP designation illustrates an in-depth knowledge of sustainable landscape best practices and stormwater best management practices.

“Completing the CBLP certification program was a valuable experience,” said Cory Speroff. “Growing up, I spent a lot of time on the Chesapeake Bay, and even more time in its expansive watershed. It’s very fulfilling to know that I can take the knowledge I’ve learned back to Princeton Hydro and not only make positive impacts for our clients, but also impact the health of a system that so many people use for work and recreation.”

In order to earn the CBLP certification, participants must earn and report 20 continuing education units (CEUs) every two years in the areas of sustainable landscape and stormwater design, installation and maintenance topics; climate change issues; native plants and native plant communities; ecological plant design; or other related subject matters. In addition, newly-certified CBLPs must complete and document at least 6 hours of hands-on practice.

As a landscape designer for Princeton Hydro, Cory is responsible for the creation of designs, renderings, graphics, planting lists, planting plans, and construction documents associated with various aspects of environmental restoration and stormwater management. Cory is a Temple University’s Master of Landscape Architecture Program graduate. The program gave him unique exposure to a traditional landscape architecture education infused with ecological restoration, a combination that facilitated the exploration of how to achieve the most socioeconomic value from a space while also achieving high environmental function, which leads to informed and creative design solutions.

For more information about the CBLP-certification, visit cblpro.org. For more information about Princeton Hydro’s services, visit PrincetonHydro.com.

ABOUT PRINCETON HYDRO
Princeton Hydro was formed in 1998 with the specific mission of providing integrated ecological and engineering consulting services. Offering expertise in aquatic and terrestrial ecology, water resources engineering, and geotechnical investigations, the firm provides a full suite of environmental services.