Part Two: Reducing Flood Risk in Moodna Creek Watershed

Photo of Moodna Creek taken from the Forge Hill Road bridge, New Windsor Post Hurricane Irene (Courtesy of Daniel Case via Wikimedia Commons)

This two-part blog series showcases our work in the Moodna Creek Watershed in order to explore common methodologies used to estimate flood risk, develop a flood management strategy, and reduce flooding.

Welcome to Part Two: Flood Risk Reduction and Stormwater Management in the Moodna Creek Watershed

As we laid out in Part One of this blog series, the Moodna Creek Watershed, which covers 180 square miles of eastern Orange County, New York, has seen population growth in recent years and has experienced significant flooding from extreme weather events like Hurricane Irene, Tropical Storm Lee, and Hurricane Sandy. Reports indicate that the Moodna Creek Watershed’s flood risk will likely increase as time passes.

Understanding the existing and anticipated conditions for flooding within a watershed is a critical step to reducing risk. Our analysis revealed that flood risk in the Lower Moodna is predominantly driven by high-velocity flows that cause erosion, scouring, and damage to in-stream structures. The second cause of risk is back-flooding due to naturally formed and man-made constrictions within the channel. Other factors that have influenced flood risk within the watershed, include development within the floodplain and poor stormwater management.

Now, let’s take a closer look at a few of the strategies that we recommended for the Lower Moodna Watershed to address these issues and reduce current and future flood risk:

Stormwater Management

Damage to Butternut Drive caused when Moodna Creek flooded after Hurricane Irene (Courtesy of Daniel Case via Wikimedia Commons)

Stormwater is the runoff or excess water caused by precipitation such as rainwater or snowmelt. In urban areas, it flows over sewer gates which often drain into a lake or river. In natural landscapes, plants absorb and utilize stormwater, with the excess draining into local waterways.  In developed areas, like the Moodna Creek watershed, challenges arise from high volumes of uncontrolled stormwater runoff. The result is more water in streams and rivers in a shorter amount of time, producing higher peak flows and contributing to flooding issues.

Pollutant loading is also a major issue with uncontrolled stormwater runoff. Population growth and development are major contributors to the amount of pollutants in runoff as well as the volume and rate of runoff. Together, they can cause changes in hydrology and water quality that result in habitat loss, increased flooding, decreased aquatic biological diversity, and increased sedimentation and erosion.

To reduce flood hazards within the watershed, stormwater management is a primary focus and critical first step of the Moodna Creek Watershed Management Plan. The recommended stormwater improvement strategies include:

  • Minimizing the amount of impervious area within the watershed for new development, and replacing existing impervious surfaces with planter boxes, rain gardens and porous pavement.
  • Utilizing low-impact design measures like bioretention basins and constructed-wetland systems that mimic the role of natural wetlands by temporarily detaining and filtering stormwater.
  • Ensuring the long-term protection and viability of the watershed’s natural wetlands.

The project team recommended that stormwater management be required for all projects and that building regulations ensure development does not change the quantity, quality, or timing of run-off from any parcel within the watershed. Recommendations also stressed the importance of stormwater management ordinances focusing on future flood risk as well as addressing the existing flooding issues.

Floodplain Storage

Floodplains are the low-lying areas of land where floodwater periodically spreads when a river or stream overtops its banks. The floodplain provides a valuable function by storing floodwaters, buffering the effect of peak runoff, lessening erosion, and capturing nutrient-laden sediment.

Communities, like the Moodna Creek watershed, can reduce flooding by rehabilitating water conveyance channels to slow down the flow, increasing floodplain storage in order to intercept rainwater closer to where it falls, and creating floodplain benches to store flood water conveyed in the channel.  Increasing floodplain storage can be an approach that mimics and enhances the natural functions of the system.

One of the major causes of flooding along the Lower Moodna was the channel’s inability to maintain and hold high volumes of water caused by rain events. During a significant rain event, the Lower Moodna channel tends to swell, and water spills over its banks and into the community causing flooding. One way to resolve this issue is by changing the grading and increasing the size and depth of the floodplain in certain areas to safely store and infiltrate floodwater. The project team identified several additional opportunities to increase floodplain storage throughout the watershed.

One of the primary areas of opportunity was the Storm King Golf Club project site (above). The team analyzed the topography of the golf course to see if directing flow onto the greens would alter the extent and reach of the floodplain thus reducing the potential for flooding along the roadways and properties in the adjacent neighborhoods. Based on LiDAR data, it was estimated that the alteration of 27 acres could increase floodplain storage by 130.5 acre-feet, which is equivalent to approximately 42.5 million gallons per event.

Land Preservation & Critical Environmental Area Designation

For areas where land preservation is not a financially viable option, but the land is undeveloped, prone to flooding, and offers ecological value that would be impacted by development, the project team recommended a potential Critical Environmental Area (CEA) designation. A CEA designation does not protect land in perpetuity from development, but would trigger environmental reviews for proposed development under the NY State Quality Environmental Review Act. And, the designation provides an additional layer of scrutiny on projects to ensure they will not exacerbate flooding within the watershed or result in an unintentional increase in risk to existing properties and infrastructure.

Conserved riparian areas also generate a range of ecosystem services, in addition to the hazard mitigation benefits they provide. Protected forests, wetlands, and grasslands along rivers and streams can improve water quality, provide habitat to many species, and offer a wide range of recreational opportunities. Given the co-benefits that protected lands provide, there is growing interest in floodplain conservation as a flood damage reduction strategy.


These are just a few of the flood risk reduction strategies we recommended for the Lower Moodna Creek watershed. For a more in-depth look at the proposed flood mitigation strategies and techniques, download a free copy of our Moodna Creek Watershed and Flood Mitigation Assessment presentation.

Revisit part-one of this blog series, which explores some of the concepts and methods used to estimate flood risk for existing conditions in the year 2050 and develop a flood management strategy.

Two-Part Blog Series: Flood Assessment, Mitigation & Management

For more information about Princeton Hydro’s flood management services, go here: http://bit.ly/PHfloodplain

Two-Part Blog Series: Flood Assessment, Mitigation & Management

In this two part blog series, we showcase our work in the Moodna Creek Watershed in order to explore some of the concepts and methods used to estimate flood risk for existing conditions and the year 2050 and develop a flood management strategy (Part One), and traditional engineering and natural systems solutions used to manage and reduce flood risk (Part Two).

Part One: Flood Assessment & Mitigation Analysis in the Moodna Creek Watershed

The greater Moodna Creek watershed covers 180 square miles of eastern Orange County, NY. The watershed includes 22 municipalities and hundreds of streams before joining the Hudson River. This region has seen tremendous growth in recent years with the expansion of regional transit networks and critical infrastructure.

The Moodna Creek watershed can be split into two sub-basins — the Upper Moodna Creek and the Lower Moodna Creek. In the span of 15 months, Hurricane Irene, Tropical Storm Lee, and Hurricane Sandy each have caused significant flooding throughout the Moodna Creek watershed, damaging public facilities, roadways, and private properties. Both sub-basin communities have noted a concern about increased flood risk as more development occurs.

As global temperatures rise, climate models are predicting more intense rainfall events. And, the flood risk for communities along waterways — like the Moodna Creek watershed — will likely increase as time passes. In order to understand existing and future risk from flood events in this flood-prone area, a flood risk management strategy needed to be developed. The strategy uses a cost-benefit analysis to review the feasibility of each measure and the overall impact in reducing flood risks.

With funds provided from a 2016 grant program sponsored by the New England Interstate Waters Pollution Control Commission (NEIWPCC) and the New York State Department of Environmental Conservation’s (NYCDEC) Hudson River Estuary Program (HEP), Princeton Hydro along with a variety of project partners completed a flood assessment and flood mitigation analysis specific to the Lower Moodna Creek watershed.

Let’s take a closer look at our work with the Lower Moodna Creek watershed, and explore some of the methods used to estimate flood risk and develop a flood management strategy:

Lower Moodna Creek Watershed Flood Assessment & Analysis

The primary Lower Moodna Creek project goals were to assess flood vulnerabilities and propose flood mitigation solutions that consider both traditional engineering strategies and natural systems solution approaches (land preservation, wetland/forest restoration, green infrastructure and green water management). The project team focused on ways to use the natural environment to reduce risk.  Instead of strictly focusing on just Moonda Creek, the team took a holistic approach which included all areas that drain into the river too. These analyses were incorporated into a Flood Assessment Master Plan and Flood Mitigation Plan, which will serve as a road map to reducing flooding issues within the watershed.

Managing Flood Risk

The first step in managing flood risk is to understand what type of exposure the communities face. The Moodna Creek project modeled flooding within the watershed during normal rain events, extreme rain events, and future rain events with two primary goals in mind:

Visual assessment being conducted in flood-prone areas of Moodna Creek Watershed.

  • Assess the facilities, infrastructure, and urban development that are at risk from flooding along the Moodna Creek and its tributaries within the study area.
  • Develop a series of hydrologic and hydraulic models to assess the extent of potential flooding from the 10-year (10%), 100-year (1%),  and 500-year (0.2%) storm recurrence intervals within the study area. The modeling includes flows for these storm events under existing conditions and also hypothetical scenarios with predicted increases in precipitation and population growth.

 

The project team used these models and data to propose and evaluate a series of design measures that help reduce and mitigate existing and anticipated flood risk within the study area. Where possible, the proposed solutions prioritized approaches that protect and/or mirror natural flood protection mechanisms within the watershed such as floodplain re-connection and wetland establishment. In addition to flood protection, the project components also provide water quality protection, aesthetics and recreation, pollutant reduction, and wildlife habitat creation.

Land Use and Zoning

Zoning is a powerful tool that determines a region’s exposure to hazards and risk. Zoning determines which uses are permitted, or encouraged, to be built in moderate and high-risk areas. It also prevents certain uses, such as critical facilities, from being built in those areas. Zoning is also a determinant of a region’s character and identity.

In the Lower Moodna Creek watershed, a large majority (82%) of land is zoned for residential use. However, in the flood-prone areas, there is a higher ratio of areas zoned for non-residential uses (commercial, industrial) than in areas that are zoned for potential future development. Specifically, within the 10-year storm recurrence floodplain, 30% of the land is zoned for industrial use. This is likely because several facilities, such as wastewater treatment plants and mills, require access to the river and were strategically developed to be within immediate proximity of waterfront access. The Lower Moodna zoning analysis demonstrated a general preference within watershed to limit residential use of flood-prone areas. 

Land Preservation

Preserving land allows for natural stormwater management, as well as limits the exposure of development, and minimizes sources of erosion within the watershed. Preserved land also maintains the hydrologic and ecologic function of the land by allowing rainwater to be absorbed or retained where it falls and thus minimizing run-off. If the land within the floodplain is preserved, it will never be developed, and therefore the risk — a calculation of rate exposure and the value of the potential damage — is eliminated.  Therefore, land preservation, both within the floodplains and in upland areas, is the best way to minimize flood damage.

Conserved riparian areas also generate a range of ecosystem services, in addition to the hazard mitigation benefits they provide. Protected forests, grasslands, and wetlands along rivers and streams can improve water quality, provide habitat to many species, and offer a wide range of recreational opportunities. Given the co-benefits that protected lands provide, there is growing interest in floodplain conservation as a flood damage reduction strategy.

Within the mapped Lower Moodna floodplains, our assessment determined that there appears to be a slight priority for preserving land most at-risk for flooding. This is likely a consequence of prioritizing land that is closest to riparian areas and preserving wetland areas, which are the most likely to experience flooding. Within the floodplains for the 10-year storm, approximately 22.7% is preserved. For the 100-year storm, approximately 21.2% of the land is preserved. Within the 500-year storm, this number drops slightly to 20.3%. These numbers are so close in part because the difference between the 10-year, 100-year, and 500-year floodplains are small in many areas of the watershed.

Hydrology and Hydraulics

Hydrology is the scientific study of the waters of the earth, with a particular focus on how rainfall and evaporation affect the flow of water in streams and storm drains. Hydraulics is the engineering analysis of the flow of water in channels, pipelines, and other hydraulic structures. Hydrology and hydraulics analyses are a key part of flood management.

As part of this flood assessment, Princeton Hydro created a series of hydrologic and hydraulic (H&H) models to assess the extent of potential flooding from the 10-year, 100-year, and 500-year storm recurrence intervals within the Lower Moodna. The modeling, which included flows for these storm events under existing conditions and future conditions based on predicted increases in precipitation and population growth, makes it easier to assess what new areas are most impacted in the future.

These are just a few of the assessments we conducted to analyze the ways in which flooding within the watershed may be affected by changes in land use, precipitation, and mitigation efforts. The flood models we developed informed our recommendations and proposed flood mitigation solutions for reducing and mitigating existing and anticipated flood risk.

Check out Part Two of this blog series in which we explore flood risk-reduction strategies that include both traditional engineering and natural systems solutions:

Part Two: Reducing Flood Risk in Moodna Creek Watershed

For more information about Princeton Hydro’s flood management services, go here: http://bit.ly/PHfloodplain.

 

Conservation Spotlight: Dunes at Shoal Harbor Shoreline Protection

Hurricane Sandy was the largest storm to ever originate in the Atlantic ocean. It badly damaged several countries in the Caribbean, caused over $50 billion in damages along the Eastern Seaboard, and left dozens dead. While hurricanes are a natural part of our climate system, research shows that intense hurricane activity has been on the rise in the North Atlantic since the 1970s. This trend is likely to be exacerbated by sea level rise and growing populations along coastlines. Natural coastal habitats — like wetlands and dunes — have proven to shield people from storms and sea-level rise, and have protected coastal communities from hundreds of millions of dollars in damage.

The Dunes at Shoal Harbor, a residential community in Monmouth County, New Jersey, is situated adjacent to both the Raritan Bay and the New York City Ferry channel. The site, previously utilized for industrial purposes, consisted of a partially demolished docking/berthing facility. A significantly undersized 6” diameter, 8-foot long stone revetment was also constructed on the property.

During Hurricane Sandy, the revetment failed and the community was subjected to direct wave attack and flooding. Homes were damaged, beach access was impaired, and the existing site-wide stormwater management basin and outfall was completely destroyed.

Princeton Hydro performed a wave attack analysis commensurate with a category three hurricane event, and used that data to complete a site design for shoreline protection. Consistent with the analysis, the site design includes the installation of a 15-foot rock revetment (one foot above the 100-year floodplain elevation) constructed with four-foot diameter boulders. The project also consists of replacing a failed elevated timber walkway with a concrete slab-on-grade walkway, restoring portions of the existing bulkhead, clearing invasive plants, and the complete restoration of the failed stormwater basin and outlet.

A rendering of the “Dunes at Shoal Harbor” shoreline protection design by Princeton Hydro.

The plan incorporates natural barriers to reduce the impacts of storm surges and protect the coastal community, including planting stabilizing coastal vegetation to prevent erosion and installing fencing along the dune to facilitate natural dune growth.

These measures will discourage future erosion of the shoreline, protect the residential community from future wave attacks and flooding, and create a stable habitat for native and migratory species.  The project is currently in the permitting phase, and will move to construction when all permits are obtained from local, state, and federal agencies.

This project is an great example of Princeton Hydro’s ability to coordinate multi-disciplinary projects in-house. Our Water Resources Engineering, Geosciences Engineering, and Natural Resources teams have collaborated efficiently to analyze, design, and permit this shoreline protection project. For more information on our engineering services, go here.

Conservation Spotlight: FORTESCUE SALT MARSH AND AVALON TIDAL MARSH RESTORATION

HABITAT RESTORATION THROUGH APPLICATION OF DREDGED MATERIAL

New Jersey, like other coastal states, has been losing coastal wetland habitats to a combination of subsidence, erosion and sea level rise. The New Jersey Department of Environmental Protection received a grant from the National Fish and Wildlife Federation to address this issue and rejuvenate these critical habitats. Grantees were charged with providing increased resilience to natural infrastructure that will in turn increase the resiliency of coastal communities in the face of future storms like Hurricane Sandy.

As a consultant for GreenTrust Alliance, a land conservancy holding company, Princeton Hydro worked with several project partners, including NJDEP, the US Army Corps of Engineers, NJDOT, The Wetlands Institute, and The Nature Conservancy, to increase the marsh elevation to an optimal range where vegetation, and the wildlife that depends on it, can flourish. One of the techniques used for this project included the use of dredged material disposal placement, which involves using recycled sand and salt dredged from navigation channels to boost the elevation of the degraded marsh.

A media statement from NJDEP further explained the process, “sediments dredged from navigation channels and other areas are pumped onto eroding wetlands to raise their elevations enough to allow native marsh grasses to flourish or to create nesting habitats needed by some rare wildlife species. Healthy marshes with thick mats of native grasses can cushion the impact of storm surges, thereby reducing property damage.”

FORTESCUE SALT MARSH

The salt marsh at the Fortescue project site is part of the Fortescue Wildlife Management Area. The specific goal of the project was to restore and enhance the interior high and low marsh, coastal dune and beach habitats.

To achieve these habitat enhancements, the Princeton Hydro project team first established biological benchmarks of each targeted habitat type and evaluated them to determine the upper and lower elevational tolerances for target communities and plant species. Approximately 33,300 cubic yards of dredged materials were used to restore a degraded salt marsh, restore an eroded dune, and replenish Fortescue Beach. The eroded dune was replaced with a dune designed to meet target flood elevations and protect the marsh behind it against future damage. The dune was constructed using dredged sand, and, to prevent sediment from entering the waterways, a Filtrexx containment material was used.

AVALON TIDAL MARSH

This project site is a tidal marsh complex located within a back-bay estuary proximal to Stone Harbor and Avalon. Princeton Hydro and project partners aimed to enhance the marsh in order to achieve the primary goal of restoring the natural function of the tidal marsh complex.

Two main activities were conducted in order to apply the dredged material to the impaired marsh plain: 1.) the placement of a thin layer of material over targeted areas of existing salt marsh to increase marsh elevations, 2.) the concentrated placement of material to fill expanding pools by elevating the substrate to the same elevation as the adjacent marsh. In total, dredged material was distributed among eight distinct placement areas throughout the property’s 51.2 acres.

These coastal wetland restoration activities will help to prevent the subsidence-based marsh loss by filling isolated pockets of open water and increasing marsh platform elevation. In addition, the beneficial reuse of dredged material facilitates routine and post-storm dredging and improves the navigability of waterways throughout the U.S.