Princeton Hydro Photo Contest

To celebrate Earth Week 2017, Princeton Hydro founder Steve Souza launched an internal company photo contest for which he asked everyone to submit their best photos of nature.

A panel of judges reviewed the photos through a blind judging process, narrowed it down to the top five, and ultimately chose a winner. Without further ado, we’d like to congratulate Michael Rehman for scoring the 1st place win! His “Barred Owl” photo won him a $100 gift certificate and lots of bragging rights.

So many great photos were submitted – we just had to share them! The photo album below includes Michael’s winning pic, the runners up, and a selection of photos submitted by each of the contest participants. Thanks to everyone who had a hand in the photo contest! Keep getting out there and enjoying nature!

Winning Photo "Barred Owl" by Michael Rehman

Winning Photo
“Barred Owl” by Michael Rehman

Read about Princeton Hydro’s 2016 Earth Day Photo Contest here.

Four Ways Climate Change Could Affect Your Lake

The Local Effects of Climate Change Observed Through our Community Lakes

Climate change is an enormous concept that can be hard to wrap your head around. It comes in the form of melting ice caps, stronger storms and more extreme seasonal temperatures. If you’re an avid angler, photographer, swimmer, boater or nature enthusiast, it’s likely that because of climate change you’ll bear witness to astonishing shifts in nature throughout the greater portion of your lifetime. This is especially true with respect to lakes.

2015-07-07-10-01-20Lakes are living laboratories through which we can observe the local effects of climate change in our own communities. Lake ecosystems are defined by a combination of various abiotic and biotic factors. Changes in hydrology, water chemistry, biology or physical properties of a lake can have cascading consequences that may rapidly alter the overall properties of a lake. Most of the time the results are negative and the impacts severe. Recognizing and monitoring the changes that are taking place locally brings the problems of climate change closer to home, which can help raise awareness and inspire environmentally-minded action.

Princeton Hydro has put together a list of four inter-related, climate change induced environmental impacts that can affect lakes and lake communities:

1. Higher temperatures = shifts in flora and fauna populations

The survival of many lake organisms is dependent on the existence of set temperature ranges and ample oxygen levels. The amount of dissolved oxygen (DO) present in a lake is a result of oxygen diffusion from the atmosphere and its production by algae and aquatic plants via photosynthesis. An inverse relationship exists between water temperature and DO concentrations. Due to the physical properties of water, warmer water holds less DO than cooler water.

This is not good news for many flora and fauna, such as fish that can only survive and reproduce in waters of specific temperatures and DO levels. Lower oxygen levels can reduce their ability to feed, spawn and survive. Populations of cold water fishes, such as brown trout and salmon, will be jeopardized by climate change (Kernan, 2015).

358-001-carp-from-churchvilleAlso consider the effects of changing DO levels on fishes that can tolerate these challenging conditions. They will thrive where others struggle, taking advantage of their superior fitness by expanding their area of colonization, increasing population size, and/or becoming a more dominant species in the ecosystem. A big fish in a little pond, you might say. Carp is a common example of a thermo-tolerant fish that can quickly colonize and dominate a lake’s fishery, in the process causing tremendous ecological impact (Kernan, 2010).

2. Less water availability = increased salinity

Just as fish and other aquatic organisms require specific ranges of temperature and dissolved oxygen to exist, they must also live in waters of specific salinity. Droughts are occurring worldwide in greater frequency and intensity. The lack of rain reduces inflow and higher temperatures promote increased evaporation. Diminishing inflow and dropping lake levels are affecting some lakes by concentrating dissolved minerals and increasing their salinity.

Studies of zooplankton, crustaceans and benthic insects have provided evidence of the consequences of elevated salinity levels on organismal health, reproduction and mortality (Hall and Burns, 2002; Herbst, 2013; Schallenberg et al., 2003). While salinity is not directly related to the fitness or survival rate of all aquatic organisms, an increase in salinity does tend to be stressful for many.

3. Nutrient concentrations = increased frequency of harmful algal blooms

Phosphorus is a major nutrient in determining lake health. Too little phosphorus can restrict biological growth, whereas an excess can promote unbounded proliferation of algae and aquatic plants.

before_strawbridgelake2If lake or pond water becomes anoxic at the sediment-water interface (meaning the water has very low or completely zero DO), phosphorus will be released from the sediment. Also some invasive plant species can actually “pump” phosphorus from the sediments and release this excess into the water column (termed luxurious uptake). This internally released and recycled sedimentary phosphorus can greatly influence lake productivity and increase the frequency, magnitude and duration of algae blooms. Rising water temperatures, declining DO and the proliferation of invasive plants are all outcomes of climate change and can lead to increases in a lake’s phosphorus concentrations and the subsequent growth and development of algae and aquatic plants.

Rising water temperatures significantly facilitate and support the development of cyanobacteria (bluegreen algae) blooms. These blooms are also fueled by increasing internal and external phosphorus loading. At very high densities, cyanobacteria may attain harmful algae bloom (HAB) proportions. Elevated concentrations of cyanotoxins may then be produced, and these compounds seriously impact the health of humans, pets and livestock.

rain-garden-imagePhosphorus loading in our local waterways also comes from nonpoint sources, especially stormwater runoff. Climate change is recognized to increase the frequency and magnitude of storm events. Larger storms intensify the mobilization and transport of pollutants from the watershed’s surrounding lakes, thus leading to an increase in nonpoint source loading. Additionally, larger storms cause erosion and instability of streams, again adding to the influx of more phosphorus to our lakes. Shifts in our regular behaviors with regards to fertilizer usage, gardening practices and community clean-ups, as well as the implementation of green-infrastructure stormwater management measures can help decrease storm-related phosphorus loading and lessen the occurrence of HABs.

4. Cumulative effects = invasive species

A lake ecosystem stressed by agents such as disturbance or eutrophication can be even more susceptible to invasive species colonization, a concept coined “invasibility” (Kernan, 2015).

For example, imagine that cold water fish species A has experienced a 50% population decrease as a result of warming water temperatures over ten years. Consequently, the fish’s main prey, species B, has also undergone rapid changes in its population structure. Inversely, it has boomed without its major predator to keep it in check. Following this pattern, the next species level down – species B’s prey, species C – has decreased in population due to intense predation by species B, and so on. Although the ecosystem can potentially achieve equilibrium, it remains in a very unstable and ecologically stressful state for a prolonged period of time. This leads to major changes in the biotic assemblage of the lake and trickle-down changes that affect its recreational use, water quality and aesthetics.

• • •

Although your favorite lake may not experience all or some of these challenges, it is crucial to be aware of the many ways that climate change impacts the Earth. We can’t foresee exactly how much will change, but we can prepare ourselves to adapt to and aid our planet. How to start? Get directly involved in the management of your lake and pond. Decrease nutrient loading and conserve water. Act locally, but think globally. Get out and spread enthusiasm for appreciating and protecting lake ecosystems. Also, check out these tips for improving your lake’s water quality.


References

  1. Hall, Catherine J., and Carolyn W. Burns. “Mortality and Growth Responses of Daphnia Carinata to Increases in Temperature and Salinity.” Freshwater Biology 47.3 (2002): 451-58. Wiley. Web. 17 Oct. 2016.
  1. Herbst, David B. “Defining Salinity Limits on the Survival and Growth of Benthic Insects for the Conservation Management of Saline Walker Lake, Nevada, USA.” Journal of Insect Conservation 17.5 (2013): 877-83. 23 Apr. 2013. Web. 17 Oct. 2016.
  1. Kernan, M. “Climate Change and the Impact of Invasive Species on Aquatic Ecosystems.” Aquatic Ecosystem Health & Management (2015): 321-33. Taylor & Francis Online. Web. 17 Oct. 2016.
  1. Kernan, M. R., R. W. Battarbee, and Brian Moss. “Interaction of Climate Change and Eutrophication.” Climate Change Impacts on Freshwater Ecosystems. 1st ed. Chichester, West Sussex, UK: Wiley-Blackwell, 2010. 119-51. ResearchGate. Web. 17 Oct. 2016.
  1. Schallenberg, Marc, Catherine J. Hall, and Carolyn W. Burns. “Consequences of Climate-induced Salinity Increases on Zooplankton Abundance and Diversity in Coastal Lakes”Marine Ecology Progress Series 251 (2003): 181-89. Inter-Research Science Center. Inter-Research. Web. 17

Enjoy Your Labor Day Adventures Responsibly

Princeton Hydro Offers
Seven Tips for Environmentally-Friendly Outdoor Fun

 

Labor Day is right around the corner! Many people will soon be packing up the car with fishing gear, and heading to their favorite lake for a fun-filled weekend.

As biologists, scientists and outdoor enthusiasts, all of us at Princeton Hydro fully enjoy getting outside and having fun in nature. We also take our responsibility to care for and respect our natural surroundings very seriously. We play hard and work hard to protect our natural resources for generations to come.

These seven tips will help you enjoy your Labor Day fishing, boating and outdoor adventures with minimal environmental impact:

  • Before you go, know your local fishing regulations. These laws protect fish and other aquatic species to ensure that the joys of fishing can be shared by everyone well into the future.
  • Reduce the spread of invasive species by thoroughly washing your gear and watercraft before and after your trip. Invasives come in many forms – plants, fungi and animals – and even those of microscopic size can cause major damage.
  • Stay on designated paths to avoid disrupting sensitive and protected areas, like wetlands, shorelines, stream banks and meadows. Disturbing and damaging these sensitive areas can jeopardize the health of the many important species living there.
  • Exercise catch and release best practices. Always keep the health of the fish at the forefront of your activities by using the right gear and employing proper techniques. Get that info by clicking here
  • Use artificial lures or bait that is native to the area you’re fishing in. Live bait that is non-native can introduce invasive species to water sources and cause serious damage to the surrounding environment.
  • Plan ahead and map your trip. Contact the office of land management to learn about permit requirements, area closures and other restrictions. Use this interactive map to find great fishing spots in your area, the fish species you can expect to find at each spot, nearby gear shops, and more!

Armed with these seven tips, you can now enjoy your weekend while feeling rest assured that you’re doing your part to protect the outdoor spaces and wild places we all love to recreate in! Go here to learn about some of the work Princeton Hydro does to restore and protect our natural resources.

120903 Dock
“Respect nature and it will provide you with abundance.”

–compassionkindness.com

Pesticide-Free Lake Management Solutions

Blue Water Solutions for Green Water Problems

Managing your lakes and ponds without the use of pesticides

 

Proper lake and pond restoration is contingent with having a well prepared management plan. If you don’t start there, you’re just guessing as to which solutions will solve your problem. Successful, sustainable lake and pond management requires identifying and correcting the cause of eutrophication as opposed to simply reacting to the symptoms (algae and weed growth) of eutrophication. As such, Princeton Hydro collects and analyzes data to identify the problem causers and uses these scientific findings to develop a customized management plan for your specific lake or pond. A successful management plan should include a combination of biological, mechanical and source control solutions.  Here are some examples:


Biological Control:

Floating Wetland Islands (FWIs) are a great example of an effective biological control solution. They have the potential to provide multiple ecological benefits. Highly adaptable, FWIs can be sized, configured and planted to fit the needs of nearly any lake, pond or reservoir.

BROOKS LAKE FWI

Often described as self-sustaining, Floating Wetland Islands:

  • Help assimilate and remove excess nutrients that could fuel algae growth
  • Provide habitat for fish and other aquatic organisms
  • Help mitigate wave and wind erosion impacts
  • Provide an aesthetic element
  • Can be part of a holistic lake/pond management strategy

Read an article on Floating Wetland Islands written by our Aquatics Director Fred Lubnow.

Mechanical Control:

Another way to combat algae and invasive weed growth is via mechanical removal. One of the mechanical controls Princeton Hydro employs is the TruxorDM5000, an eco-friendly, multi-purpose amphibious machine that provides an effective, non-pesticide approach to controlling invasive weeds and problematic algae growth.

The TruxorDM5000: TRUXOR

  • Is capable of operating in shallow ponds and lakes where the access and/or operation of conventional harvesting or hydroraking equipment is limited
  • Is highly portable and maneuverable, yet very powerful
  • Can cut and harvest weeds and collect mat algae in near-shore areas with water depths less than three feet
  • Includes various attachments that allow the machine to easily collect and remove a variety of debris
  • Can be outfitted for sediment removal/dredging

Check out the Truxor in action here! 

Source Control:

Because phosphorus is typically the nutrient that fuels algae and weed growth, excessive phosphorus loading leads to problematic algal blooms and can stimulate excessive weed growth. One of the most sustainable means of controlling nuisance weed and algae proliferation is to control phosphorus inputs or reduce the availability of phosphorus for biological uptake and assimilation. The measures that decrease the amount or availability of phosphorus in a lake or pond are defined as “source control” strategies.

Deerfield Lake, PA – PhosLockTM treatment Through data collection and analysis, we can properly identify the primary sources of phosphorus loading to a lake and pond, whether those sources are internal or external.  Our team of lake managers, aquatic ecologists and water resource engineers use those data to develop a management plan that quantifies, prioritizes and correctly addresses problem sources of phosphorus.

PhosLockTM and alum are often utilized as environmentally-safe and controlled means to limit phosphorus availably. Although PhosLockTM works similar to alum, it does not have some of the inherent secondary environmental limitations associated with alum. PhosLockTM is a patented product that has a high affinity to bind to and permanently remove from the water column both soluble reactive and particulate forms of phosphorus. This makes it a very effective pond and lake management tool.

Read more about controlling harmful algae blooms.

These are just a few of the examples of non-pesticide lake and pond management strategies that Princeton Hydro regularly utilizes. Properly managing your lakes and ponds starts with developing the right plan and involves a holistic approach to ensure continued success. For more ideas or for help putting together a customized, comprehensive management plan, please contact us! 

Tracking and Addressing Harmful Algae Blooms

Princeton Hydro’s PARE™ Program:
A Tool for Tracking and Addressing Harmful Algae Blooms (HABs)

Understanding HABs

Over the past decade we have learned more about the serious health implications associated with intense cyanobacteria (bluegreen algae) blooms. Although cyanobacteria are not truly algae, these blooms have come to be labeled Harmful Algae Blooms (HABs). Cyanobacteria have a number of evolved advantages relative to “good phytoplankton.” For example, many cyanobacteria are capable of fixing and assimilating atmospheric nitrogen, thus providing them with an unlimited source of a key growth-limiting nutrient. Most are also biologically adept at up-taking and utilizing organic phosphorus, another growth-limiting nutrient. Certain cyanobacteria can also regulate their position in the water column, thereby enabling them to capitalize on changing environmental conditions. HABsMany also are adept at effectively photosynthesizing under low light conditions. Finally, they are selectively rejected as a food source by filter feeders and zooplankton. These “life history” strategies enable cyanobacteria to rapidly out-compete phytoplankton and exploit their environment leading to a bloom.

It has been repeatedly documented that, under the correct set of conditions, HABs may generate very high concentrations of cyanotoxins. These toxins are used by cyanobacteria to achieve dominance in a lake, pond or river. Swimming in waters with even low concentrations of cyanotoxin may cause skin rashes (even for dogs and livestock), ear/throat infections and gastrointestinal distress. At high concentrations, cyanotoxins can impact the health of humans, pets and livestock. Drinking water contaminated by very high cyanotoxin concentrations can actually be lethal. Recently, increased attention is being given to possible links between cyanotoxins and neurodegenerative diseases, including Parkinson’s, ALS and Alzheimer’s.

The cyanobacteria of greatest concern include Microcystis, Planktothrix, Anabaena, Aphanizomenon, Oscillatoria, Lyngbya and Gloeotrichia. Different types of cyanotoxins are produced by these various cyanobacteria. The cyanotoxins receiving the most attention are Microcystin-LR and Cylindrospermopsin, but Anatoxin–a, Saxitoxins and Anatoxin-a(S) are also very problematic.

Regulatory agencies are still struggling to define what constitutes a “problem” and how to deal with HABs. For a number of years the World Health Organization (WHO) has used a provisional drinking water standard of 1 µg/L microcystin in drinking water. The US Environmental Protection Agency (USEPA) recently issued cyanotoxin guidance for drinking water that provides different action levels for children versus adults and for microcystin and cylindrospermopsin¹. Adding to the confusion, the majority of the States are still developing guidance and/or regulations concerning cyanotoxins in both drinking water and recreational waterbodies. As such, it is difficult to define when a bloom constitutes a problem and, more importantly, what action to implement to protect the health and welfare of the public, pets and livestock.

Cyanotoxins may be released into the environment by both living and dead cyanobacteria. However, the greatest concentrations occur as the cyanobacteria die and the cells break down –  something that is exacerbated by treating it with copper sulfate, which is the standard response to treating a bloom. Thus, “killing off” a bloom can actually make matters worse by quickly releasing large amounts of cyanotoxins into the water column. Once released into the environment, cyanotoxins are extremely stable and decompose slowly.

Common Misconceptions About HABs

There are a variety of common misconceptions about HABs, including: they occur only in the summer when water temperatures are elevated; they are unique to nutrient rich (hypereutrophic) systems; they are driven solely by elevated phosphorus concentrations; and they are most likely to occur under stable (stratified) water column conditions. The most potentially harmful misconception is that HABs can be cured by treating them with copper sulfate; because, as noted above, copper sulfate treatments can actually make things worse.

The above “typical conditions” don’t always lead to a HAB, and blooms with elevated cyanotoxin levels may occur even in nutrient-limited waters or under environmental circumstances that deviate from the “norm.” To further complicate matters, not all cyanobacteria are associated with HABs, cyanotoxin producers may not always produce cyanotoxins, and the taste and odor compounds often associated with HABs may be generated by non-HAB algae species. As such, the only definitive way to understand if a waterbody suffers from, or is in danger of suffering from, a HAB is to collect the proper data. This includes:

  • Quantification and speciation of the phytoplankton community
  • Collection and analysis of Chlorophyll a
  • In-Situ measurement of
    • Dissolved oxygen
    • Temperature
    • pH
    • Secchi disk depth
  • Collection and analysis of
    • Phosphorus (TP, SRP, DOP and DIP)
    • Nitrogen (Nitrate and Ammonia)
  • Measurement of taste and odor compounds
    • Geosmin
    • 2-methylisoborneol (aka MIB)
  • Analysis of the amount of Microcystin present in the water column.

To date, cyanotoxin testing has been expensive and the data turn-around slow.

A Strategy for Tracking and Managing HABs

To help understand and monitor HABs, Princeton Hydro recently launched a multi-prong strategy called PARE™ (Predict, Analyze, React, and Educate). Princeton Hydro’s PARE™ program focuses on the importance of thoroughly understanding site conditions, properly tailoring action programs and sustaining management efforts that go far beyond simply treating a bloom. As noted above, the PARE™ program consists of four key, interrelated elements:

  • Predict – Forecast a bloom using a long-term database of keystone parameters, and/or remote sensing techniques
  • Analyze – Quantify a bloom’s severity by measuring key diagnostic parameters including Microcystin
  • React – Implement measures to prevent, control or terminate a HAB
  • Educate – Share information with and educate the community about HABs

Predict

Ideally, to successfully predict HABs, it is paramount to measure the amounts of phosphorus, nitrogen, and chlorophyll in the water column, track dissolved oxygen and water temperature profiles, and identify the types and densities of cyanoWater Quality Databacteria and phytoplankton. Overall, in order to effectively predict the onset, magnitude and duration of a HAB, it is necessary to have a good data foundation.

Analyze

With an adequate database, it becomes possible to develop algorithms that account for all of the chemical, hydrologic and physical variables that may lead to HABs, including seasonal differences in weather and precipitation. In some cases it may also be possible to utilize remote sensing technology to track bloom development.

With a suitable database, it becomes possible to develop HAB thresholds based on:

  • Phytoplankton densities (cell counts)
  • Bloom indicators
    • Declining Secchi disc clarity : < 1 meter)
    • Chlorophyll a concentration: >20 µg/L)
    • MIB concentration : >10 ng/L
    • Geosmin concentration: > 10 ng/L

As part of PARE™ we also now have the ability to quickly and effectively measure the concentration of Microcystin in the water column using a combination of rapid response field test kits and accurate, quick-turnaround laboratory analyses.  The Microcystin data can then be compared to established USEPA or, when available, state guidance concentrations for cyanotoxins in drinking water and recreational water.

React

The data that are generated from the Predict and Analyze elements of the PARE™ program enables us to know when aChart bloom is about to occur or has developed, and quantify the severity of the bloom.  The many variables that may lead to HABs interact in a complex manner in lake and pond ecosystems. Manipulating the ecosystem to prevent or treat HABs requires extensive expertise.  

Some of the interactions that must be taken into consideration include:   

Biological linkages and interactions

  • Nitrogen fixers versus non-nitrogen fixers
  • Early blooming species potentially setting the stage for more problematic later blooming species
  • Zooplanktivory and the role of the fishery in stimulating a bloom or creating the environmental conditions supportive of a bloom
  • Nitrogen/Phosphorus ratios as well as the type, availability and sources of these primary nutrients

Through the correct understanding of these interactions it becomes possible to properly React by designing and implementing various pre-emptive controls and corrective measures such as:

  • Aeration and mixing,
  • Use of nutrient inactivators (alum, PhosLock® and alum surrogates),
  • Ozone,
  • Biomanipulation of the fish and plankton communities, and
  • Limited, properly timed algaecide applications.  

On a larger, long-term scale, the React element of the PARE™ program encompasses watershed management programs targeting nutrient load reductions that can actually reduce bloom frequency/intensity.  

Although the React element recognizes the role of algaecides as a potential part of the solution, it does not condone repeated extensive treatments with copper sulfate.  As noted above, relying solely on substantial copper sulfate treatments most often only triggers worse conditions and leads to spiraling, repetitive blooms.

Education and Outreach

Besides informing the public about health concerns related to cyanobacteria and HABs, it is important that stakeholders are also informed about measures that they can implement to help prevent blooms.  This includes “on-lot” nutrient controls such as septic management, limited application of lawn fertilizers, creation of shoreline buffers and waterfowl control. It is also necessary for stakeholders to understand the lifecycle of HABs, that ongoing monitoring and management help address HABs before they peak, and that, while seeming to be the “magic bullet,” copper sulfate is not the proper management tool.

Implementing PARE™

Begin PARE™ early, with the sampling of the above-noted key water quality Sampling Kitparameters and bloom initiated in early spring.  Then sample on a regular basis over the entire course of the growing season, especially in the summer when cyanobacteria problems emerge and peak. This information will become the foundation of the comprehensive database used to make timely management decisions.  The key is to be in a position to predict the onset of a bloom so that management actions can be implemented in a proactive, as opposed to reactive, manner.  Microcystin sampling can be focused on beach areas or around water intakes.  Begin with the simple, test-strip rapid response, in-field testing and, when necessary, use the laboratory analyses to confirm or further quantify whether a bloom has triggered a cyanotoxin problem.  If there is early evidence of a cyanobacteria bloom, implement the proper measures needed to control the bloom.  While bloom control measures are being implemented, continue to collect and analyze the microcystin data to confirm that the implemented measures have improved water quality and that conditions are safe for the ingestion of the water or the recreational use of the lake. After achieving specific water quality and HAB control goals, continue to implement the measures needed to track conditions and prevent/react to future blooms.  This will further facilitate the ability to respond to and control cyanobacteria blooms.

For more information about HABs and PARE™ come see us at the upcoming Pennsylvania Lake Management Society (PALMS) Conference. Click for details.


¹0.3 µg/L for microcystin and 0.7 µg/L for cylindrospermopsin children < than school age. For all others 1.6 µg/L for microcystin and 3.0 µg/L for cylindrospermopsin.

Natural VS. Artificial Lakes

In addition to deep versus shallow, waterbodies can also be compared and contrasted as naturally occurring or as the result of an artificial impoundment or reservoir. While there are a wide variety of natural lakes -from the glacial lakes of northern regions, to oxbow lakes adjacent to rivers, to coastal lakes that can be connected to the ocean – most of these natural systems have a number of common characteristics. Some of these include variable nutrient and sediment loading (from low to high, depending on the nature of the watershed) and low to moderate watershed-to-lake area ratios. In addition, natural waterbodies tend to have distinct and sometimes extensive littoral zone fringe habitat along the shoreline. Littoral habitat is the interface between the land and the open waters of a lake. Typically, rooted aquatic macrophytes (plants and mat algae) are found in the littoral zone, along with a number of aquatic organisms that use this habitat for food and/or cover. Thus, the littoral zone of lake is frequently the most productive areas of this ecosystem.

Graphic adapted from www.cues.cfans_umin.edu

Graphic adapted from www.cues.cfans_umin.edu

In contrast, large artificial impoundments, frequently called reservoirs, are waterbodies typically created by placing a dam across a stream or river (see below). This often results in the triangular shape of a reservoir; the deepest portion is located just behind the dam. Unlike many natural lakes that have a number of small inlet or inflow streams, a reservoir typically has one main inflow, which is essentially the river or stream that was originally dammed. Traveling upgradient from the dam towards the main inlet, water depth will decline. Additionally, many reservoirs are a type of hybrid of natural lakes and rivers. The upgradient/inflow part of the reservoir functions more like a riverine system, while the main body of the reservoir near the dam functions more like a lake (see below).

Graphic adapted from Reservoir Limnology: Ecological Perspectives, edited by K.W. Thornton, B.L. Kimmel and F.E. Payne, 1990

Graphic adapted from Reservoir Limnology: Ecological Perspectives, edited by K.W. Thornton, B.L. Kimmel and F.E. Payne, 1990

Since reservoirs are essentially dammed rivers, they tend to have very large watershed-to -lake area ratios, which means they tend to experience substantially higher nutrient and sediment loads compared to natural lakes. Thus, the level of productivity (algae growth) in the open waters of a reservoir is substantially higher than those of a natural lake. This means reservoirs have the tendency to experience larger and more frequent algal blooms. High rates of sediment loads also means rates of sedimentation will be higher in reservoirs compared to natural lakes. Finally, since the water level of reservoirs are highly dependent on inflow from the main riverine source, as well as water withdrawals in the case in drinking water supplies, the establishment of a littoral zone in reservoirs tends to be very limited.

In summary, a reservoir of comparable size to a natural lake will typically have a higher level of algal productivity, higher rates of sedimentation, and a smaller amount of biological diversity (with the general absence of a littoral zone). Thus, water quality problems can be larger and more frequent in reservoirs when compared to many natural lakes. Since many reservoirs are vital sources of potable water for millions of people throughout the United States, the general management activities for a reservoir tends to be higher relative to many natural lakes.

Join us next time, when we will discuss lake and pond productivity, the role the watershed plays in productivity, and how this impacts their recreational, potable and ecological value.