Levee Inspections Along the Elizabeth River

Ursino Dam on the Elizabeth River in Union County, New Jersey is one of the sites Princeton Hydro inspected for flood control, ensuring the system is providing the level of protection it was designed to deliver.

By Brendon Achey, Princeton Hydro’s Lead Geologist; Soils Laboratory Manager; Project Manager

Located 20 miles southwest of New York City, the City of Elizabeth, New Jersey, is situated along the Elizabeth River. For the city’s 125,000 residents, living along the river has many benefits, but the benefits are not without flood risk. In order to manage the risk associated with potential flooding, a series of levees and floodwalls were installed along the banks of the Elizabeth River. A levee is an embankment that is constructed to prevent overflow from a river. They are a crucial element for protecting cities from disastrous flooding, and as such they require periodic inspections to ensure that all components are functioning properly.

Princeton Hydro was contracted by the U.S. Army Corps of Engineers, New York District (USACE NYD) to perform rigorous flood control project inspections (i.e., “Periodic Inspections”) for the four levee systems located along the Elizabeth River.  For this project, our team inspected over 17,000 linear feet of levee embankment and 2,500 linear feet of floodwall.

Levee systems are comprised of components which collectively provide flood risk management to a defined area. These components can include levees, structural floodwalls, closure gates, pumping stations, culverts, and interior drainage works. These components are interconnected and collectively ensure the protection of development and/or infrastructure that is situated within a floodplain. Failure of just one critical component within a system could constitute an overall system failure. During Hurricane Katrina, for example, dozens of levees were destroyed, leaving the Louisiana coast with billions of dollars in damage and over one thousand lives lost.

Periodic inspections are necessary in order to ensure a levee system will perform as expected. They are also needed to identify deficiencies in the levee, or areas that need monitoring or immediate repair. Critically important maintenance activities include continuously assessing the integrity of the levee system to identify changes over time, collecting information to help inform decisions about future actions, and providing the public with information about the levees on which they rely.

Levee Inspection Process

Periodic inspections are extremely comprehensive and include three key steps: data collection, field inspection, and development of a final report.

Data Collection

Prior to conducting field inspections, Princeton Hydro’s engineers evaluated the Elizabeth River levee system’s documented design criteria. This evaluation was conducted to assess the ability of each feature and the overall system to function as authorized, and also to identify any potential need to update the system design. Princeton Hydro teamed with HDR to carry out the inspections. A comprehensive review of existing data on operation and maintenance, previous inspections, emergency action plans, and flood fighting records was also performed.

Field Inspection

The Princeton Hydro field inspection team consisted of geotechnical, water resource, mechanical, structural, and electrical engineers. Detailed inspections were performed on each segment of each levee system.  This included the detailed inspection and documentation of over 17,000 linear feet of levee embankment, over 2,500 linear feet of floodwall, four pumping stations, 29 interior drainage structures, five closure gates, and various other encroachments and facilities. Princeton Hydro identified, evaluated, and rated the state of each of these system elements. As part of this field inspection task, Princeton Hydro utilized a state-of-the-art tablet and GIS technology in order to field-locate inspection points and record item ratings. This digital collection of data helps expedite data processing and ensures higher levels of accuracy.

Development of Final Report

Princeton Hydro prepared a Periodic Inspection Report for each of the four levee systems inspected, which included the results of the design document review, methods and results of the field inspection, a summary of areas/items of concern, a preliminary engineering assessment of causes of distress or abnormal conditions, and recommendations for remedial actions to address identified concerns. Final report development included briefing the USACE Levee Safety Officer (LSO) on our inspection findings, assigned ratings, and recommendations.

Levee inspections are vital to the longevity of levee systems and the safety of the communities they protect. By providing the municipalities with detailed inspection reports, effective repair and management programs can be designed and implemented efficiently. This helps to ensure the levee systems are providing the level of protection that they were designed to deliver.

Princeton Hydro’s Geoscience and Water Resource Engineering teams perform levee and dam inspections throughout the Mid-Atlantic and New England Regions. For more info, visit: http://bit.ly/PHEngineering

Brendon Achey provides a wide range of technical skills and services for Princeton Hydro. His responsibilities include: project management, preparation and quality control of technical deliverables, geotechnical investigations and analysis, groundwater hydrology, soil sampling plan design and implementation, and site characterization. He is responsible for managing the daily operations of the AASHTO accredited and USACE validated soil testing laboratory. In addition to laboratory testing and analysis, Brendon is responsible for analyzing results in support of geotechnical and stormwater management design evaluations. This may include bearing capacity and settlement analysis of both shallow and deep foundations, retaining wall design, and recommendations for stormwater management practices.

Two-Part Blog Series: Flood Assessment, Mitigation & Management

In this two part blog series, we showcase our work in the Moodna Creek Watershed in order to explore some of the concepts and methods used to estimate flood risk for existing conditions and the year 2050 and develop a flood management strategy (Part One), and traditional engineering and natural systems solutions used to manage and reduce flood risk (Part Two).

Part One: Flood Assessment & Mitigation Analysis in the Moodna Creek Watershed

The greater Moodna Creek watershed covers 180 square miles of eastern Orange County, NY. The watershed includes 22 municipalities and hundreds of streams before joining the Hudson River. This region has seen tremendous growth in recent years with the expansion of regional transit networks and critical infrastructure.

The Moodna Creek watershed can be split into two sub-basins — the Upper Moodna Creek and the Lower Moodna Creek. In the span of 15 months, Hurricane Irene, Tropical Storm Lee, and Hurricane Sandy each have caused significant flooding throughout the Moodna Creek watershed, damaging public facilities, roadways, and private properties. Both sub-basin communities have noted a concern about increased flood risk as more development occurs.

As global temperatures rise, climate models are predicting more intense rainfall events. And, the flood risk for communities along waterways — like the Moodna Creek watershed — will likely increase as time passes. In order to understand existing and future risk from flood events in this flood-prone area, a flood risk management strategy needed to be developed. The strategy uses a cost-benefit analysis to review the feasibility of each measure and the overall impact in reducing flood risks.

With funds provided from a 2016 grant program sponsored by the New England Interstate Waters Pollution Control Commission (NEIWPCC) and the New York State Department of Environmental Conservation’s (NYCDEC) Hudson River Estuary Program (HEP), Princeton Hydro along with a variety of project partners completed a flood assessment and flood mitigation analysis specific to the Lower Moodna Creek watershed.

Let’s take a closer look at our work with the Lower Moodna Creek watershed, and explore some of the methods used to estimate flood risk and develop a flood management strategy:

Lower Moodna Creek Watershed Flood Assessment & Analysis

The primary Lower Moodna Creek project goals were to assess flood vulnerabilities and propose flood mitigation solutions that consider both traditional engineering strategies and natural systems solution approaches (land preservation, wetland/forest restoration, green infrastructure and green water management). The project team focused on ways to use the natural environment to reduce risk.  Instead of strictly focusing on just Moonda Creek, the team took a holistic approach which included all areas that drain into the river too. These analyses were incorporated into a Flood Assessment Master Plan and Flood Mitigation Plan, which will serve as a road map to reducing flooding issues within the watershed.

Managing Flood Risk

The first step in managing flood risk is to understand what type of exposure the communities face. The Moodna Creek project modeled flooding within the watershed during normal rain events, extreme rain events, and future rain events with two primary goals in mind:

Visual assessment being conducted in flood-prone areas of Moodna Creek Watershed.

  • Assess the facilities, infrastructure, and urban development that are at risk from flooding along the Moodna Creek and its tributaries within the study area.
  • Develop a series of hydrologic and hydraulic models to assess the extent of potential flooding from the 10-year (10%), 100-year (1%),  and 500-year (0.2%) storm recurrence intervals within the study area. The modeling includes flows for these storm events under existing conditions and also hypothetical scenarios with predicted increases in precipitation and population growth.

 

The project team used these models and data to propose and evaluate a series of design measures that help reduce and mitigate existing and anticipated flood risk within the study area. Where possible, the proposed solutions prioritized approaches that protect and/or mirror natural flood protection mechanisms within the watershed such as floodplain re-connection and wetland establishment. In addition to flood protection, the project components also provide water quality protection, aesthetics and recreation, pollutant reduction, and wildlife habitat creation.

Land Use and Zoning

Zoning is a powerful tool that determines a region’s exposure to hazards and risk. Zoning determines which uses are permitted, or encouraged, to be built in moderate and high-risk areas. It also prevents certain uses, such as critical facilities, from being built in those areas. Zoning is also a determinant of a region’s character and identity.

In the Lower Moodna Creek watershed, a large majority (82%) of land is zoned for residential use. However, in the flood-prone areas, there is a higher ratio of areas zoned for non-residential uses (commercial, industrial) than in areas that are zoned for potential future development. Specifically, within the 10-year storm recurrence floodplain, 30% of the land is zoned for industrial use. This is likely because several facilities, such as wastewater treatment plants and mills, require access to the river and were strategically developed to be within immediate proximity of waterfront access. The Lower Moodna zoning analysis demonstrated a general preference within watershed to limit residential use of flood-prone areas. 

Land Preservation

Preserving land allows for natural stormwater management, as well as limits the exposure of development, and minimizes sources of erosion within the watershed. Preserved land also maintains the hydrologic and ecologic function of the land by allowing rainwater to be absorbed or retained where it falls and thus minimizing run-off. If the land within the floodplain is preserved, it will never be developed, and therefore the risk — a calculation of rate exposure and the value of the potential damage — is eliminated.  Therefore, land preservation, both within the floodplains and in upland areas, is the best way to minimize flood damage.

Conserved riparian areas also generate a range of ecosystem services, in addition to the hazard mitigation benefits they provide. Protected forests, grasslands, and wetlands along rivers and streams can improve water quality, provide habitat to many species, and offer a wide range of recreational opportunities. Given the co-benefits that protected lands provide, there is growing interest in floodplain conservation as a flood damage reduction strategy.

Within the mapped Lower Moodna floodplains, our assessment determined that there appears to be a slight priority for preserving land most at-risk for flooding. This is likely a consequence of prioritizing land that is closest to riparian areas and preserving wetland areas, which are the most likely to experience flooding. Within the floodplains for the 10-year storm, approximately 22.7% is preserved. For the 100-year storm, approximately 21.2% of the land is preserved. Within the 500-year storm, this number drops slightly to 20.3%. These numbers are so close in part because the difference between the 10-year, 100-year, and 500-year floodplains are small in many areas of the watershed.

Hydrology and Hydraulics

Hydrology is the scientific study of the waters of the earth, with a particular focus on how rainfall and evaporation affect the flow of water in streams and storm drains. Hydraulics is the engineering analysis of the flow of water in channels, pipelines, and other hydraulic structures. Hydrology and hydraulics analyses are a key part of flood management.

As part of this flood assessment, Princeton Hydro created a series of hydrologic and hydraulic (H&H) models to assess the extent of potential flooding from the 10-year, 100-year, and 500-year storm recurrence intervals within the Lower Moodna. The modeling, which included flows for these storm events under existing conditions and future conditions based on predicted increases in precipitation and population growth, makes it easier to assess what new areas are most impacted in the future.

These are just a few of the assessments we conducted to analyze the ways in which flooding within the watershed may be affected by changes in land use, precipitation, and mitigation efforts. The flood models we developed informed our recommendations and proposed flood mitigation solutions for reducing and mitigating existing and anticipated flood risk.

Stay tuned for Part Two of this blog series in which we will explore flood risk-reduction strategies that include both traditional engineering and natural systems solutions. For more information about Princeton Hydro’s flood management services, go here: http://bit.ly/PHfloodplain.

 

November Events Spotlight: Conferences Throughout the Country

Princeton Hydro is participating in a variety of conferences taking place throughout the country that address topics ranging from lake management to green infrastructure resiliency:

October 30 – November 2: North American Lake Management Society (NALMS) Conference

NALMS is hosting its 38th International Symposium in Cincinnati Ohio, titled “Now Trending: Innovations in Lake Management.” This year’s symposium includes a robust exhibit hall, a variety of field trips, and a wide array of presentations on topics ranging from the latest in monitoring technologies to combating invasive species to nutrient and water quality management and more. Princeton Hydro’s Dr. Fred Lubnow, Director of Aquatic Programs, and Dr. Stephen Souza, Founder, both of whom have been members of NALMS since its inception, are presenting and exhibiting during the conference.

LEARN MORE

 

October 31 – November 2: Society for American Military Engineers (SAME) Small Business Conference (SBC)

SAME gives leaders from the A/E/C, environmental, and facility management industries the opportunity to come together with federal agencies in order to showcase best practices and highlight future opportunities for small businesses to work in the federal market. Princeton Hydro is proud to be attending the 2018 SAME SBC Conference, which is being held in New Orleans and co-locating with the Department of Veteran’s Affairs’ National Veterans Small Business Engagement. The program consists of networking events, small business exhibits, a variety of speakers and much more.

LEARN MORE & REGISTER

 

November 2: The 2nd Annual New Jersey Watershed Conference

We are a proud sponsor of this year’s New Jersey Watershed Conference, which is an educational event that aims to advance knowledge and communications on issues related to water quality and quantity across the state. The agenda features a variety of presentations from local experts on watershed management, stormwater, green infrastructure, and the problems and solutions related to the health of our watersheds. Princeton Hydro is exhibiting & our Marketing Coordinator, Kelsey Mattison, is leading a workshop on “How Social Media can be a Champion for your Watershed.”

LEARN MORE & REGISTER

 

November 4 – 8: 2018 American Water Resources Association Conference

The AWRA’s 53rd Annual Water Resources Conference is being held in Baltimore, MD. Community, conversations and connections are highlights of every AWRA conference and the 2018 conference will provide plenty of opportunities for all three, including an exhibitor hall, networking events, and variety of presentations and technical sessions. Princeton Hydro’s Christiana Pollack, GISP, CFM is giving a presentation on flood assessment and mitigation. 

LEARN MORE & REGISTER

 

November 8 – 10: Engineers Without Borders (EWB) USA Conference

The EWB, a nonprofit humanitarian organization that partners with developing communities worldwide in order to improve their quality of life, is hosting its USA National Conference in San Francisco.  The ​annual ​conference ​will ​address ​the ​theme ​“Engineers Unlock Potential.” ​Experts, ​practitioners, ​decision-makers, ​young ​professionals ​and ​students ​from ​a ​range ​of ​sectors ​will come together to network, exchange ideas, foster new thinking and develop solutions to the world’s most pressing infrastructure ​challenges. Princeton Hydro Staff Engineer Natalie Rodrigues, EIT, CPESC-IT, a EWB member, is attending the conference and presentation. Her session, titled “So You Think You Might Like to be an EWB Regional Officer or State Representative, ” is designed for those interested in taking the next step beyond Chapter or Project participation at EWB-USA, as well as for current Regional Steering Committee members who want to “amp up” their game.

LEARN MORE & REGISTER

 

November 13: Society for American Military Engineers (SAME) Philadelphia Resiliency Symposium

SAME Philadelphia is hosting an all day symposium featuring experts on infrastructure resiliency in the face of extreme storms, flooding and other natural disasters. Presentation topics include, Flood Hazard Risk and Climate Change Effects for Bulk Oil Storage Facilities; Post-Storm Infrastructure Improvements and Stream Restoration; and Resilience Risk Analysis and Engineering. Princeton Hydro President Geoffrey Goll, P.E. is giving a presentation titled, “Enhancing Coastal Habitat & Increasing Resiliency through Beneficial Reuse of Dredged Material in New Jersey.” We hope to see you there!

LEARN MORE & REGISTER

 

November 16: NJ Chapter American Water Resources Association (NJ-AWRA) Future Risk Symposium

As the frequency and intensity of storm events changes, how should watershed managers, engineers, and planners make informed decisions for the future? NJ-AWRA’s 2018 Future Risk Symposium, held at Duke Farms in Hillsborough, NJ, will focus on Future Flooding in Riverine Systems with presentations on climate trends, modeling, and planning that can be used in NJ to prepare for future flood events in New Jersey’s riverine systems. Princeton Hydro’s Christiana Pollack, GISP, CFM is giving a presentation on flood assessment, and the concepts and methods used to estimate flood risk for existing conditions and the year 2050.

LEARN MORE & REGISTER

 

STAY TUNED FOR MORE EVENT SPOTLIGHTS!

Innovative and Effective Approach to Wetland Restoration

The Pin Oak Forest Conservation Area is a 97-acre tract of open space that contains an extremely valuable wetland complex at the headwaters of Woodbridge Creek. The site is located in a heavily developed landscape of northern Middlesex County and is surrounded by industrial, commercial, and residential development. As such, the area suffered from wetland and stream channel degradation, habitat fragmentation, decreased biodiversity due to invasive species, and ecological impairment. The site was viewed as one of only a few large-scale freshwater wetland restoration opportunities remaining in this highly developed region of New Jersey.

Recognizing the unique qualities and great potential for rehabilitating and enhancing ecological function on this county-owned parkland, a dynamic partnership between government agencies, NGOs, and private industry, was formed to restore the natural function of the wetlands complex, transform the Pin Oak Forest site into thriving habitat teeming with wildlife, and steward this property back to life. The team designed a restoration plan that converted 28.94 acres of degraded freshwater wetlands, 0.33 acres of disturbed uplands dominated by invasive species, and 1,018 linear feet of degraded or channelized streams into a species-rich and highly functional headwater wetland complex.

BEFORE
View of stream restoration area upon commencement of excavation activities. View of containerized plant material staged prior to installation.

 

We used an innovative approach to restore the hydraulic connection of the stream channel with its floodplain in order to support wetland enhancement. Additionally, to further enhance wetlands with hydrologic uplift, the team incorporated microtopography techniques, which creates a variable surface that increases groundwater infiltration and niches that support multiple habitat communities. This resulted in a spectrum of wetland and stream habitats, including the establishment of a functional system of floodplain forest, scrub shrub, emergent wetlands and open water. Biodiversity was also increased through invasive species management, which opened the door for establishing key native flora such as red maple, pin oak, swamp white oak, and swamp rose. The restored headwater wetland system also provides stormwater quality management, floodplain storage, enhanced groundwater recharge onsite, and surface water flows to Woodbridge Creek.

Completed in 2017, the integrated complex of various wetland and upland communities continues to provide high quality habitat for a wide variety of wildlife species including the state-threatened Black-crowned Night heron and Red-headed Woodpecker. The work done at the site significantly enhanced ecological function, providing high-quality habitat on indefinitely-preserved public lands that offer countless benefits to both wildlife and the community.

AFTER
Post-restoration in 2018, looking Northeast. View of wetland enhancement approximately 2 months after completion of seeding and planting activities.

 

Public and private partnerships were and continue to be critical to the success of this project. The diverse partnership includes Middlesex County Office of Parks and Recreation, Woodbridge Township, Woodbridge River Watch, New Jersey Freshwater Wetlands Mitigation Council, GreenTrust Alliance, GreenVest, and Princeton Hydro. The partners joined together as stakeholders to identify long term restoration and stewardship goals for Pin Oak Forest Preserve, and nearly four years later, the partners all remain involved in various aspects of managing the property and this project itself, ranging from fiscal oversight by New Jersey Freshwater Wetland Mitigation Council and GreenTrust Alliance, to permit and landowner access coordination performed by Woodbridge Township and Middlesex County, or the ongoing stewardship, maintenance, and monitoring of the project and the larger park, being conducted by being conducted by GreenTrust Alliance, GreenVest, and NJ Department of Environmental Protection.

This project was funded through the New Jersey Freshwater Wetland In-Lieu Fee program. In 2014, GreenTrust Alliance, GreenVest, and Princeton Hydro secured $3.8 million dollars of funding on behalf of the Middlesex County Parks Department to restore three wetland sites, which included Pin Oak Forest.

The Pin Oak Forest project is a great model for showcasing a successful approach to the enhancement of public lands through a dynamic multidisciplinary, multi-stakeholder partnership. And, because of proper planning and design, it has become a thriving wildlife oasis tucked in the middle of a densely-populated suburban landscape.

Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of wetland rehabilitation projects. To learn more about our wetland restoration, creation, and enhancement services, visit: bit.ly/PHwetland

Announcing John Eichholz as Financial Strategist and Controller

Princeton Hydro is pleased to announce the appointment of John Eichholz as its Financial Strategist and Controller. John joins Princeton Hydro’s executive team and will be responsible for leading financial operations and providing overall strategic direction across the firm.

John brings to Princeton Hydro more than 25 years of experience in financial analysis, strategic planning, business operations, and marketing strategy. He has worked at an array of globally-recognized companies, including Dun & Bradstreet, American Express, MasterCard, and Barclays. He specializes in financial forecasting, enhancing marketing performance through analysis and competitive intelligence, and developing strategic frameworks on how to lead corporate-wide initiatives.

“I am thrilled to welcome John to the Princeton Hydro executive team,” said Princeton Hydro President Geoffrey Goll, P.E. “I am confident his expertise in finance, his innovative, results-oriented mindset, and his alignment with our firm’s core values together make him very well-suited to guide our long-term growth efforts and help us achieve our full potential.”

Prior to joining Princeton Hydro, John served as Principal Consultant at Oakwood Consulting Services, where he helped a diverse set of clients develop annual budgeting and forecasting models, and management reports. Earlier in his career, John led consulting engagements with many of the top credit card issuers in the U.S., Canada, and United Kingdom. John also served as Director at Barclays and created an analytically-driven cross-sell program to improve customer loyalty and increase card usage. John brings with him a clear track record of having significant positive impact on business results at the companies where he has worked.

“I am truly excited to join such a talented and growing organization that takes such great pride in producing high-quality projects with both clients and regulators over a broad service area,” said John.

John received a Bachelor of Arts in Political Science and a Master of Business Administration in Marketing and Operations Management from Columbia University. He lives in New Hope, PA, with his two children. When not attending swim meets and archery tournaments, John can be found cycling and attending music events throughout the Philadelphia area.

Princeton Hydro was formed in 1998 with the specific mission of providing integrated ecological and engineering consulting services. Offering expertise in ecosystems, water resources management and engineering, and geotechnical investigations and design, our staff provides a full suite of services throughout the Mid-Atlantic and New England states. We take great pride in producing high-quality projects; which is achieved by our highly skilled team. Our capabilities are reflected in our award-winning projects that consistently produce real-world, cost-effective solutions. If you’re interested in learning how Princeton Hydro can help you, please contact us.

Wild & Scenic Film Festival is Coming to Hackettstown

To celebrate the 50th Anniversary of the Wild and Scenic Rivers Act, the Musconetcong Watershed Association (MWA) is hosting the “Wild & Scenic Film Festival On Tour”. The festival is free and open to the public, but seating is limited so, registration is required. The festival will be held on Sunday, September 9th from 10 am to 2 pm at Centenary University in Hackettstown, NJ.

To bring communities together around local and global environmental issues, The “Wild & Scenic Film Festival” goes “on-tour” partnering with nonprofit organizations and local groups to screen films year-round with hopes of inspiring individuals to take environmental action. The tour stops in 170 communities around the globe, features over 150 award-winning films, and welcomes over 100 guest speakers, celebrities, and activists who bring a human face to the environmental movement.

Credit: NPS.gov

The Hackettstown, NJ tour event will feature 11 short films including River Connections, which celebrates the 50th anniversary of the Federal Wild and Scenic Rivers Act, under which the Musconetcong River is protected. The film explores the importance of free-flowing rivers and highlights the recent Hughesville Dam removal project. An interactive panel event will follow the film screening and feature experts including MWA Executive Director Alan Hunt, Ph.D. and Princeton Hydro President Geoffrey Goll, P.E., who were both interviewed in the film.

“Our multidisciplinary approach to dam removal using ecology and engineering, paired with a dynamic stakeholder partnership, led to a successful river restoration, where native fish populations returned within a year,” said Princeton Hydro’s President Geoffrey Goll, P.E. “We are grateful for MWA’s hard work in organizing this film festival so we can continue to share our dam removal success stories and the importance of the Wild and Scenic Rivers Act.”

Princeton Hydro, a proud sponsor of the “Wild & Scenic Film Festival On Tour,” has worked with MWA to design five dam removals on the Musconetcong River, including the Hughesville Dam. As noted in the River Connections film, the Hughesville Dam was a major milestone in restoring migratory fish passage along the Musconetcong. Only a year after the completion of the dam removal, American shad were documented as having returned to the “Musky” for the first time in 250 years.

The tour leads up to the annual 5-day film festival, which will be held January 17-21, 2019 in Nevada City and Grass Valley, California. Sponsored by National Park Service, the Wild & Scenic Film Festival honors the Wild and Scenic Rivers Act, landmark legislation passed by Congress in October 1968 that safeguards the free-flowing character of rivers by precluding them from being dammed, while allowing the public to enjoy them. It encourages river management and promotes public participation in protecting streams.

EVENT DETAILS:

Date:         Sunday, September 9th

Time:         Doors open at 10 am and shows start at 11 am

Location:  Centenary University, Sitnik Theatre,
                  400 Jefferson St, Hackettstown, NJ 07840

Tickets:     FREE! Please register in advance:
                   https://goo.gl/NrwcgE

 

Interested to learn more about River Connections?
Check out our blog celebrating the release of the film: 

PHOTOS: Columbia Dam Removal

VIDEO: “Columbia Lake Dam when the water level was 18 inches to 2 feet lower”
Video courtesy of Matt Hencheck

In Northwest New Jersey on the Paulins Kill, an important tributary to the Delaware River, the century-old hydroelectric Columbia Dam is actively being removed. Princeton Hydro was contracted by American Rivers to investigate, design, and apply for permits for the removal of this dam for the New Jersey chapter of The Nature Conservancy. Our team of engineers and ecologists studied the feasibility of removal by collecting sediment samples, performing bioassay tests, and conducting a hydraulic analysis of upstream and downstream conditions. We’re excited to report that the Columbia Dam removal has officially commenced!

The New Jersey Department of Environmental Protection started draining water from Columbia Lake a few weeks ago, which was the first step in removing the dam. Princeton Hydro has subsequently been contracted by The Nature Conservancy to provide construction administration services.  Photos below show the water at lowered levels at the impoundments.

“Dewatering Impoundment” Photo by Princeton Hydro

“An aerial drone snapshot when water levels were down about 5 feet at the upper impoundment” Photo courtesy of the New Jersey Chapter of The Nature Conservancy

Last week, the first hammer hit the wall of a downstream dam remnant, officially starting the removal process.

“The first hammer”  Photo courtesy of Dale Bentz, RiverLogic Solutions

The dam removal process will last a few weeks, as the contractor actively knocks down the thick concrete wall.

“Pressure and time”  Photo courtesy of Dale Bentz, RiverLogic Solutions

“Halfway there”  Photo courtesy of Dale Bentz, RiverLogic Solutions

Once the dam is removed, there is a high probability that populations of American Shad and River Herring will be restored. It may also enhance American Eel migration. As a coldwater fishery, this reach also has significant potential for trout species, as well as Smallmouth Bass.

(Top) Before: Photo of the Columbia Dam before construction. (Bottom) After: Princeton Hydro’s rendering of what the river will look like once the dam is removed.

“It is very exciting to be a part of such a monumental effort for the restoration of the Paulins Kill. This river, once a major migration route for diadromous fish like American Shad, will once again be a nursery for this Delaware River icon,” said Geoffrey Goll, PE, President and co-founder of Princeton Hydro. “The removal of these dams will also restore the functions and values of a riparian corridor and floodplain, eliminate costs to the taxpayer for the maintenance of a dam and lake, and provide additional riverine recreational opportunities. I expect to see the same resilience and positive impact to the Delaware River as the recent barrier removals on another major NJ tributary, the Musconetcong River. It is a win-win for NJ, and with The Nature Conservancy at the helm and expert guidance from American Rivers, it has been an experience of a career.”

This project could not have been possible without the hard work and dedication of the following partner organizations: The Nature Conservancy of New Jersey, American Rivers, U.S. Fish and Wildlife Service, RiverLogic Solutions, NJDEP Division of Fish and Wildlife Service, and SumCo EcoContracting.

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast. To learn more about our fish passage and dam removal engineering services, visitbit.ly/DamBarrier.


This video from 2016 features the Nature Conservancy’s New Jersey State Director Barbara Brummer, Ph.D. speaking on the Columbia Dam removal. Video credit: NJ Herald.

Volunteers Pitch In at New Jersey’s Thompson Park

A volunteer effort, lead by the Middlesex County, New Jersey Parks and Recreation Department and the Rutgers Cooperative Extension, recently took place at Thompson Park.

Despite the rainy weather, 78 volunteers and members of the Youth Conservation Corps removed litter from the shoreline of Manalapan Lake, repaired fencing, made improvements to the park’s walking trails, weeded and mulched the park’s rain garden and native plant garden, and installed new plants in the rain garden.

The park’s rain garden was originally designed by Princeton Hydro Senior Water Resource Engineer Dr. Clay Emerson, PE, CFM. Rain gardens are cost effective, attractive and sustainable means to minimize stormwater runoff. They also help to reduce erosion, promote groundwater recharge, minimize flooding and remove pollutants from runoff.

By definition, a rain garden is a shallow depression that is planted with deep-rooted native plants and grasses, and positioned near a runoff source to capture rainwater. Planting native plants also helps to attract pollinators and birds and naturally reduces mosquitos by removing standing water thus reducing mosquito breeding areas.

Rain gardens temporarily store rainwater and runoff, and filter the water of hydrocarbons, oil, heavy metals, phosphorous, fertilizers and other pollutants that would normally find their way to the sewer and even our rivers and waterways.

On the day of the volunteer event, Central New Jersey received 0.44 inches of rain.  “We got to see the rain garden in action, which was really exciting,” said Princeton Hydro Senior Project Manager Kelly Klein, who volunteered at the event.

Volunteers from the following organizations participated:

  • Edison Metro Lions Club
  • Hioki USA Corporation
  • Girl Scout Troop 70306
  • East Brunswick Youth Council
  • Monroe Middle School
  • South Plainfield High School
  • Rutgers University
  • Master Gardeners of Middlesex County
  • Foresters Financial
  • Princeton Hydro

The Middlesex County Parks and Recreation Department’s next public volunteer event is tomorrow (June 2) in Davidson’s Mill Pond Park.

The Princeton Hydro team has designed and constructed countless stormwater management systems, including rain gardens in locations throughout the Eastern U.S. Click here for more information about our stormwater management services.

Princeton Hydro Supports Creation of Stormwater Utilities in New Jersey

For Immediate Release: May 15, 2018

PRESS STATEMENT 

On behalf of Princeton Hydro, LLC, a leading water resources engineering and natural resource management small business firm in New Jersey, we support the passing of New Jersey’s stormwater utility creation bill, S-1073. If S-1073 is administered in a responsible manner, we believe that it will enhance water quality and reduce flooding impacts in New Jersey.

Since our inception, Princeton Hydro has been a leader in innovative, cost-effective, and environmentally sound stormwater management. Long before the term “green infrastructure” was part of the design community’s lexicon, our engineers were integrating stormwater management with natural systems to fulfill such diverse objectives as flood control, water quality protection, and pollutant reduction. Our staff has developed regional nonpoint source pollutant budgets for over 100 waterways. The preparation of stormwater management plans and design of stormwater management systems for pollutant reduction is an integral part of many of our projects.

We have seen the benefits of allowing for stormwater utilities firsthand. In Maryland, the recently implemented watershed restoration program and MS4 efforts that require stormwater utility fees have provided a job creating-industry boom that benefits engineers, contractors, and local DPWs. At the same time, Maryland’s program is improving the water quality in the Chesapeake Bay, and stimulating the tourism and the crabbing/fishing industry.

New Jersey has the very same issues with our water resources as Maryland. Just like the Chesapeake Bay, our Barnegat Bay, Raritan Bay, and Lake Hopatcong have serious issues with stormwater runoff that is degrading our water quality and quality of life.  Our stormwater infrastructure is old and falling apart, and all stormwater utilities need continual maintenance to save money in the long run.

It is important to point out that this current bill is not a mandatory requirement, and would simply provide a mechanism for various levels of government (county, municipality, etc.) to collect a stormwater utility fee in order to recover runoff management costs.

This bill (S-1073) should not be reviewed only in the context of cost, as this bill meets all three elements of the  triple-bottom line of sustainability; social, environmental, and financial. Allowing stormwater utilities in New Jersey will create jobs, help reduce flood impacts, enhance water quality, improve our fisheries, and preserve our water-based tourism economy. 40 states have already implemented stormwater utilities, and we believe that it is time for New Jersey to join the ranks.

###

Understanding and Addressing Invasive Species

Photo from: New York State Department of Environmental Conservation, water chestnut bed at Beacon

Spring is officially here! Tulips will soon be emerging from the ground, buds blossoming on trees and, unfortunately, invasive plant species will begin their annual growing cycle. No type of habitat or region of the globe is immune to the threat of invasive species (“invasives”). Invasives create major impacts on ecosystems throughout the world, and freshwater ecosystems and estuaries are especially vulnerable because the establishment of such species in these habitats is difficult to contain and reverse.

This blog provides an introduction to invasive aquatic species, including information that will help you prevent the spread of invasives in the waterways of your community.

Defining Invasive Species

Invasive species can be defined as non-native occurring in an ecosystem that is outside its actual natural or native distributional range. Although the colonization of an ecosystem by non-native species can occur naturally, it is more often a function of human intervention, both deliberate and accidental. For aquatic ecosystems some species have become established as a result of the aquarium trade, fish culture practices and/or transport of plants and animals in the bilge and ballast water of trans-oceanic shipping vessels.

One of the primary reasons invasives are able to thrive, spread rapidly, and outcompete native species is that the environmental checks and predators that control these species in their natural settings are lacking in the ecosystems and habitat in which they become introduced. The subsequent damages they cause occur on many ecological levels including competition for food or habitat (feeding, refuge and/or spawning), direct predation and consumption of native species, introduction of disease or parasites, and other forms of disruption that lead to the replacement of the native species with the invasive species. As a result, invasives very often cause serious harm to the environment, the economy, and even human health. A prominent example is the Emerald Ash Borer, a non-native, invasive beetle that is responsible for the widespread death of ash trees.

As noted above, there are a large number of aquatic invasive species. Some of the more commonly occurring non-native aquatic plant species that impact East Coast lakes, ponds and reservoirs include:

Understanding How Invasives Spread

Either intentionally or unintentionally, people have helped spread invasives around the globe. This is not a recent phenomenon but rather something that has been occurring for centuries. “Intentional introductions,” the deliberate transfer of nuisance species into a new environment, can involve a person pouring their home aquarium into a lake or deliberate actions intended to improve the conditions for various human activities, for example, in agriculture, or to achieve aesthetics not naturally available.

Photo by: Tom Britt/CC Flickr, zebra Mussels adhered to a boat propeller“Unintentional introductions” involve the accidental transfer of invasives, which can happen in many ways, including aquatic species attached to the hull of boats or contained in bilge and ballast water. A high-profile example is the introduction of zebra mussels to North America. Native to Central Asia and parts of Europe, zebra mussels accidentally arrived in the Great Lakes and Hudson River via cargo ships traveling between the regions. The occurrence, density, and distribution of Zebra mussels occurred at an alarming rate, with the species spreading to 20 states in the United States and to Ontario and Quebec in Canada. Due to their reproductive fecundity and filter-feeding ability, they are considered the most devastating aquatic invasive species to invade North American fresh waters. They alter and diminish the plankton communities of the lakes that they colonize leading to a number of cascading trophic impacts that have especially negative consequences on fisheries. Zebra mussel infestations have also been linked to increased cyanobacteria (bluegreen algae) blooms and the occurrence of harmful algae blooms (HABs) that impact drinking water quality, recreational use, and the health of humans, pets, and livestock.

Additionally, higher than average temperatures and changes in rain and snow patterns caused by climate change further enable some invasive plant species to move into new areas. This is exemplified by the increased northly spread of hydrilla (Hydrilla verticillate), a tropical invasive plant species that has migrated since its introduction in Florida in the 1950s to lakes, rivers, and reservoirs throughout the U.S.

Regardless of how any of these invasive species first became established, the thousands of terrestrial and aquatic invasive species introduced into the U.S. have caused major ecological, recreational and economic impacts.

Measuring the Impacts of Invasives

After habitat loss, invasive, non-native species are the second largest threat to biodiversity. According to The Nature Conservancy, “Invasive species have contributed directly to the decline of 42% of the threatened and endangered species in the United States. The annual cost to the nation’s economy is estimated at $120 billion a year, with over 100 million acres (an area roughly the size of California) suffering from invasive plant infestations. Invasive species are a global problem — with the annual cost of impacts and control efforts equaling 5% of the world’s economy.”

Of the $120 billion, about $100 million per year is spent on aquatic invasive plant control to address such deleterious issues as:

  • Human health (West Nile Virus, Zika Virus)
  • Water quality impacts (Canada geese)
  • Potable water supplies (Zebra mussel)
  • Commercial fisheries (Snake head, lamprey, Eurasian ruffe, round goby)
  • Recreational activities (Eurasian watermilfoil, water chestnut, hydrilla)
  • Biodiversity (Purple loosestrife, common reed, Japanese knotweed)

Invasive species can change the food web in an ecosystem by destroying or replacing native food sources. As the National Wildlife Federation explains, “The invasive species may provide little to no food value for native wildlife. Invasive species can also alter the abundance or diversity of species that are important habitat for native wildlife. Additionally, some invasive species are capable of changing the conditions in an ecosystem, such as changing soil chemistry…”

Addressing Invasives

Our native biodiversity is an irreplaceable and valuable treasure. Through a combination of prevention, early detection, eradication, restoration, research and outreach, we can help protect our native heritage from damage by invasive species.

What Can We Do?

  • Reduce the spread
  • Routinely monitor
  • Document and report
  • Spread the word

Reducing the Spread:
The best way to fight invasive species is to prevent them from occurring in the first place. There are a variety of simple things each of us can do to help stop the introduction and spread of invasives.

  • Plant native plants on your property and remove any invasive plants. Before you plant anything, verify with your local nursery and check out this online resource for help in identifying invasive plants.
  • Thoroughly wash your gear and watercraft before and after your trip. Invasives come in many forms – plants, fungi and animals – and even those of microscopic size can cause major damage.
  • Don’t release aquarium fish and plants, live bait or other exotic animals into the wild. If you plan to own an exotic pet, do your research to make sure you can commit to looking after it. Look into alternatives to live bait.

Monitoring:
The Lake Hopatcong Foundation Water Chestnut prevention brochureInvasive plant monitoring is one of the most valuable site­-level activities people can support. Contact your local watershed organizations to inquire about watershed monitoring volunteer opportunities. For example, the Lake Hopatcong “Water Scouts” program was established to seek out and remove any instances of the invasive water chestnut species.

If you are a lake or watershed manager, the best way to begin an invasive plant monitoring project is with an expert invasive plant survey to determine which invasives are most likely to be problematic in your watershed and identify the watershed’s most vulnerable areas. Contact us to learn more.

 

Documenting and Reporting:
It’s important to learn to identify invasive species in your area and report any sightings to your county extension agent or local land manager. For example, in New Jersey there is the Invasive Species Strike Team that tracks the spread of terrestrial and aquatic invasives and works with local communities in the management of these species. Additionally, consider developing a stewardship plan for your community to help preserve its natural resources. Princeton Hydro’s team of natural resource scientists can help you get the ball rolling by preparing stewardship plans focused on controlling invasive species and protecting the long-term health of open spaces, forests habitats, wetlands, and water-quality in your community.

Spreading the word:
Many people still don’t understand the serious implications of invasive species. Education is a crucial step in stopping the spread of invasives, which is why it’s so important to talk with your neighbors, friends and family about the hazards and ecological/economic impacts of invasive species.

Also consider talking with your community lake or watershed manager about hosting an educational workshop where experts can share their knowledge about invasives specific to your area and how best to address them. Princeton Hydro’s Director of Aquatic Programs Dr. Fred Lubnow recently gave a presentation to the Lake Hopatcong Foundation titled, “Invasive Species in Watershed Management.” View it here.

 

We encourage you to share this article and spread your invasive species knowledge so that together we can help stop the introduction and spread of invasive species.