Conservation Spotlight: Reducing Flood Risk and Restoring Wetlands in Jamaica Bay

Located in Queens, New York on the northern shore of Jamaica Bay, Spring Creek South contains approximately 237 acres of undeveloped land, including wetlands and 2.4 miles of coastline. The site is bounded by the Howard Beach residential neighborhood in Queens, a commercial area along Cross Bay Boulevard, the Belt Parkway, and Jamaica Bay. The northwest section of Spring Creek South is part of the National Park Service’s Gateway National Recreation Area, and is largely comprised of small patches of degraded tidal marsh and disturbed and degraded upland ecosystems.

On October 29, 2012, Hurricane Sandy drove a catastrophic storm surge into the New Jersey and New York coastlines. Spring Creek South and the surrounding community of Howard Beach experienced record flooding and damage to property and critical infrastructure. Storm tides caused damage and erosion along the shoreline and in the salt marsh area, degrading important habitat and leaving the site vulnerable to invasive species.

Hurricane Sandy Aftermath at Howard Beach, taken 10/30/2012 by Pam Andrade

The New York State Division of Homeland Security and Emergency Services (NYSDHSES) was awarded funding from FEMA’s Hazard Mitigation Grant Program to restore Spring Creek South. The U.S. Army Corps of Engineers (USACE) New York District, serving as project administrator, contracted Princeton Hydro to provide ecosystem restoration services. The goal of the project is to reduce future flood risk exposure while also protecting, restoring, and improving the quality and function of ecological systems; improving stormwater management and water quality; and enhancing the park’s visitor experience.

To achieve this goal, the project team is using an integrated approach that involves utilizing green infrastructure to create a natural barrier for the community and reduce the risks of coastal storms. Project activities include berm construction and the restoration of tidal marsh, creation of freshwater wetland forest, and creation of maritime shrub, forest, and grassland habitats, as well as stabilization of the existing shoreline.

On December 31, 2018, we completed Phase One of the project, which entails engineering design and preliminary permitting. More specifically, we’ve provided conceptual planning; analysis of subsurface soils for geotechnical properties and hazardous waste; coastal and freshwater wetland delineations; biological benchmarking analysis; and the development of sea level rise curves and two-dimensional hydrologic and hydraulic coastal modeling. As part of the hydrology study, we analyzed what the site could be expected to look like in 50 years due to climate changes and sea level rise. Our engineering design was also brought to 65% completion.

We also obtained permits, prepared the Environmental Assessment (EA), and oversaw the National Environmental Policy Act (NEPA) process. The EA received a “Finding of No Significant Impact” (FONSI) from FEMA, which means the environmental analysis and interagency review concluded that the project has no significant impacts on the quality of the environment.

Due to the complex nature of this project and its location, we are coordinating with a variety of different entities, including the local Howard Beach Community Board, the FAA (proximity to JFK International Airport), Port Authority, USACE, NOAA Fisheries, USFWS, USEPA, NYSDEC, NYC DEP, the National Park Service, HDR Engineering and WSP Engineering.

Phase Two of the project is the construction phase, which is expected to take about two years to complete. A key part of the Spring Creek South construction activities is the restoration of approximately 40 acres of tidal marsh, which is anticipated to improve water quality locally by stabilizing sediment, reducing erosion, and filtering dissolved particulate materials. The project team will restore existing coastline areas and install a salt marsh along the shoreline. Planted with native flora, like Spartina alterniflora, a perennial deciduous grass found in intertidal wetlands, the coastal salt marsh will help to stabilize sediment. Additionally, removing invasive species like Phragmites australis from the area and replacing it with native plant species will increase the ability for native vegetation to colonize the site, improve vegetative diversity, and reduce fire risk in the park.

A forested wetland area and berm will also be created in order to provide the surrounding communities with natural shields and buffers to future storms. The berm, with an elevation of 19 feet (NAVD88), will help to manage the risk of storm surge flooding caused by coastal storms. The forested wetland area will also provide improved stormwater runoff storage, naturally filter stormwater, and, via flap gates, direct its flow toward Jamaica Bay, away from residential and commercial properties.

These measures will help to dissipate wind and wave energy, increase shoreline resilience, improve stormwater management at the site, and create habitat that increases the ecological value and biodiversity at the site, while providing resilience benefits. Restoration activities will benefit vulnerable and rare ecological communities by producing localized environmental enhancements, including improving water quality and creating and restoring habitat. The project also increases opportunities for recreational uses such as wildlife viewing/photography, fishing, and nature study.

Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of wetland rehabilitation projects. To learn more about some of our ecosystem restoration and enhancement services, visit: bit.ly/PHwetland.

 

Deal Lake Improves Water Quality on a Sustainable Basis

Success Spotlight: Deal Lake Watershed Protection Plan Implementation Project

Deal Lake Commission, Interlaken, New Jersey

Deal Lake is the largest of New Jersey’s coastal lakes, encompassing 155 acres and spanning over 27 miles of shoreline. The lake’s 4,400-acre watershed is highly developed, with the majority of development dating back to the 1940s-1960s. As a result, stormwater management, particularly with respect to water quality and volume management, is largely lacking.

Since 1980, the Deal Lake Commission (DLC) has served as the State-appointed steward of the lake.  Princeton Hydro secured the DLC $450,000 in 319(h) funding to implement the lake’s New Jersey Department of Environmental Protection-approved Watershed Protection Plan. The 319(h) funding was used by the DLC to conduct three projects designed to decrease stormwater-based pollutant loading, improve the lake’s water quality, and restore heavily eroded sections of the shoreline.

Asbury Park Comstock Street MTD

Screen Shot 2016-05-23 at 9.20.04 AMThis project involved the installation of a manufactured treatment device (MTD). MTDs are very effective “retrofit” solutions that can be used to address stormwater issues even in highly developed areas. The MTD installation was complicated by site constraints including sub-surface infrastructure. Post-installation field testing and STEPL modeling conducted by Princeton Hydro confirmed that the MTD significantly decreased the pollutant loading from one of the lake’s major stormwater outfalls.

 

Colonial Terrace Golf Course Bioretention BMPs
Screen Shot 2016-05-23 at 9.25.17 AM

Princeton Hydro conducted the field testing, engineering design, and permitting of three bio-infiltration basins constructed at the Colonial Terrace Golf Course (CTGC). Post-project-completion field testing showed each basin is capable of fully infiltrating the runoff generated by storms as great as 1.5 inches per hour. In addition, over 300 feet of eroded shoreline was stabilized with native plants. Doing so helped create a dense buffer that inhibits passage of Canada geese from the lake onto the golf course.

 

Asbury Park Boat Launch Shoreline Stabilization

Princeton Hydro developed a bio-engineering design for the stabilization of a badly eroded 250-foot segment section of shoreline adjacent to the Asbury Park boat launch. Coir fiber logs were used in conjunction with native plant material. As with the CTGC planting, help was provided by local volunteers and the DLC commissioners. The final element of the project involved the construction of a bioretention rain garden to control the runoff from the boat launch parking area. Signage was also installed to inform the public about the project and the benefits of shoreline naturalization.

 

The Deal Lake Watershed Protection Plan Implementation Project proved that despite Deal Lake being located in a highly urbanized watershed, it is possible to implement cost-effective green infrastructure and stormwater retrofit solutions capable of significantly decreasing pollutant loading to the lake.  These measures are part of the DLC’s continued efforts to utilize environmentally sustainable techniques to improve the lake’s water quality. This project won a North American Lake Management Society Technical Merit Award.

For more information about this and other Princeton Hydro projects, please contact us!