“2018 Land Ethics Award of Merit” awarded to Mullica River Wetland Mitigation Project

At the 18th Annual Land Ethics Symposium, which is presented by Bowman’s Hill Wildflower Preserve, Princeton Hydro and GreenVest, LLC were honored with the “2018 Land Ethics Award of Merit” for our restoration work at the Mullica River Wetland Mitigation Site.

We teamed up to restore the natural wetland hydrology on a 34-acre parcel of land which was heavily impaired and intensely manipulated for cranberry production over the last century. The area was home to a network of earthen berms surrounding cranberry cultivating bogs, where water onsite was managed through a series of ditches and water control structures set into the berms. The cranberry operation was bordered mostly by an Atlantic white cedar dominated swamp.

“Thank you to Bowman’s Hill for honoring this successful wetland restoration project,” said Mark Gallagher, Vice President of Princeton Hydro. “Through our partnership with GreenVest, we transformed a degraded cranberry bog into thriving emergent and forested wetlands, and restored historic headwater stream channels. These restored wetlands are providing invaluable habitat to a variety of threatened and endangered species in New Jersey, including the Pine Barrens Treefrog and Barred Owl.” 

 

While this site was degraded, it still contained four state listed species, including the state-endangered Timber Rattlesnake and the Pine Barrens Tree Frog, making it a priority site for restoration. The presence of these species influenced the design as it included provisions to incorporate habitat elements for these species.

Through the implementation of restoration activities focused on removing the site’s agricultural infrastructure, Princeton Hydro and GreenVest were able to restore a natural wetland system on the site. In addition, the restoration project reconnected the site to its floodplain and re-established a natural stream channel. The expansive, flat and wide floodplain wetland complex of the Alquatka Branch of the Mullica RIver provides floodplain connectivity for relatively frequent storm events and allows for a sustainable floodplain wetland complex in the former cranberry bog cells.

The completed project incorporated a balance of both ecological and human health and safety benefits. Additionally, the project involved innovative restoration techniques that required building consensus among local watershed protection groups and state and regional regulators, including New Jersey Department of Environmental Protection and the New Jersey Pinelands Commission. In the end, the project restored 34 acres of a highly functioning forested wetland/upland complex and reestablished 1,600+ linear feet of historic headwater stream channels.

Princeton Hydro would like to thank Bowman’s Hill Wildflower Preserve for both the award and for a organizing another successful Land Ethics Symposium. The conference focused on ways to create low-maintenance, economical and ecologically balanced landscapes using native plants and restoration techniques. Princeton Hydro was a proud “Friends Sponsor” of the event.

 

AQUATIC ORGANISM PASSAGE: A PRINCETON HYDRO BLOG SERIES

Welcome to the second installment of Princeton Hydro’s multi-part blog series about aquatic organism passage.

What you’ll learn:

  • How does promoting aquatic organism passage benefit ecosystems as a whole?
  • How can others, including people, benefit from aquatic organism passage?
  • How has Princeton Hydro supported it?

Photo by Princeton Hydro Founder Steve Souza

Fostering Ecological Balance in Food Webs

A major consequence of poorly designed culverts published in the NRCS' "Federal Stream Corridor Restoration Handbook"is the destabilization of food webs. Sufficient predators and prey must exist to maintain a balanced food web. For example, freshwater mussels (Unionidae) are a common snack among fish. A mussel’s life cycle involves using certain fish as a host for their larvae until these microscopic juveniles mature into their adult forms and drop off. During this period, the host fish will travel, effectively transporting a future food source with it.

In the presence of habitat fragmentation, the isolation of these symbiotic relationships can be devastating. Some mussel species rely on a small circle of fish species as their hosts, and conversely, some fish species rely on specific mussel species as their food. If a fish species is separated from its mussel partner, food shortages owing to a declining adult mussel population can occur.

Widespread Benefits to Flora, Fauna, and People

A shift in the 1980s recognized the importance of redesigning road-stream crossings for several reasons, including restoring aquatic organism passage and maintaining flood resiliency. Replacing culverts with larger structures that better facilitate the movement of both water and aquatic organisms benefit all species. Roads constructed over streams allow people to travel across natural landscapes while culverts that are fish-friendly convey water at a rate similar to the surrounding landscape, reducing scour in stream beds.

A man fly fishes as his dog sits by his side at Ken Lockwood Gorge, Hunterdon County. Photo from State of New Jersey website.

Fish, as well as semi-terrestrial organisms like crabs and salamanders, can take advantage of more natural stream environments and complete their migrations. Anglers appreciate healthy, plentiful fish populations nearly as much as the fish themselves. Recreation and economic growth also improve when streams regain the aquatic biological communities once lost through habitat fragmentation. According to USFWS, for every dollar spent on restoration through the Partners for Fish and Wildlife Program and Coastal Program Restoration Project, states gain $1.90 of economic activity. Stream restoration improves fish and wildlife habitat, which directly supports and enhances recreation opportunities for outdoor enthusiasts thus resulting in increased tourism-related spending and job growth.

Aquatic Organism Passage in Action at Princeton Hydro

Princeton Hydro recently completed a project to facilitate aquatic organism passage for river herring in Red Brook in Plymouth, Massachusetts. Read all about it here!

For an introduction to aquatic organism passage, be sure to check out the first post in this multipart-series.

Sources:

“Aquatic Organism Passage through Bridges and Culverts.” Flow. Vermont Department of Environmental Conservation’s Watershed Management Division, 31 Jan. 2014. Web. 14 Mar. 2017.

Hoffman, R.L., Dunham, J.B., and Hansen, B.P., eds., 2012, Aquatic organism passage at road-stream crossings— Synthesis and guidelines for effectiveness monitoring: U.S. Geological Survey Open-File Report 2012-1090, 64 p.

Jackson, S., 2003. “Design and Construction of Aquatic Organism Passage at Road-Stream Crossings: Ecological Considerations in the Design of River and Stream Crossings.” 20-29 International Conference of Ecology and Transportation, Lake Placid, New York.

Kilgore, Roger T., Bergendahl, Bart S., and Hotchkiss, Rollin H. Publication No. FHWAHIF-11-008 HEC-26. Culvert Design for Aquatic Organism Passage Hydraulic Engineering Circular Number 26. October 2010.

Michigan Natural Features Inventory. Freshwater Mussels of Michigan. Michigan State University, 2005.

 

Aquatic Organism Passage: A Princeton Hydro Blog Series

Introducing part one of a multi-part blog series about aquatic organism passage
What you’ll learn:
  • What is aquatic organism passage?
  • Why is it important?
  • How does Princeton Hydro support it?

This photo from NYS DEC demonstrates a well-designed stream crossing.

Since the US government began allotting funds for building roads in U.S. national forests in the late 1920s, hundreds of thousands of culverts were built across the country. Culverts, or drainage structures that convey water underneath a barrier such as a road or railroad, were originally built with the intention of moving water quickly and efficiently. While this goal was met, many migratory fish and other aquatic organisms could not overcome the culverts’ high-velocity flows, sending them away from their migratory destinations. If the culvert was perched, or elevated above the water surface, it would require the migratory aquatic animals to both leap upwards and fight the unnaturally fast stream current to continue their journeys. Additionally, turbulence, low flows, and debris challenged the movement of aquatic organisms.

Thus, the goal of aquatic organism passage (AOP) is to maintain connectivity by allowing aquatic organisms to migrate upstream or downstream under roads. AOP “has a profound influence on the movement, distribution and abundance of populations of aquatic species in rivers and streams”. These aforementioned species include “fish, aquatic reptiles and amphibians, and the insects that live in the stream bed and are the food source for fish”.

This photo from NYS DEC demonstrates a poorly-designed stream crossing.

A poorly designed culvert can harm fish populations in multiple ways. If sturgeon aren’t able to surpass it, habitat fragmentation prevails. And so, a once-connected habitat for thousands of sturgeon breaks into isolated areas where a few hundred now live. When the population was in the thousands, a disease that wiped out 80% of the population would still leave a viable number of individuals left to survive and mate; a population of a few hundred will be severely hurt by such an event. In sum, habitat fragmentation raises the risk of local extinction (extirpation) as well as extinction in general.

The splintering of a large population into several smaller ones can also leave species more vulnerable to invasive species. Generally, the greater the biodiversity harbored in a population, the stronger its response will be against a disturbance. A dwindling community of a few hundred herring will likely succumb to an invasive who preys on it while a larger, more robust community of a few thousand herring has a greater chance of containing some individuals who can outcompete the invasive.

Aquatic Organism Passage in Action at Princeton Hydro

Princeton Hydro recently teamed up with Trout Unlimited to reconnect streams within a prized central-Pennsylvanian trout fishery.  Our team enabled aquatic organism passage by replacing two culverts in Pennsylvania’s Cross Fork Creek. Read about it here!

Sources:

“Aquatic Organism Passage through Bridges and Culverts.” Flow. Vermont Department of Environmental Conservation’s Watershed Management Division, 31 Jan. 2014. Web. 14 Mar. 2017.

Hoffman, R.L., Dunham, J.B., and Hansen, B.P., eds., 2012, Aquatic organism passage at road-stream crossings— Synthesis and guidelines for effectiveness monitoring: US Geological Survey Open-File Report 2012-1090, 64p.

Jackson, S., 2003. “Design and Construction of Aquatic Organism Passage at Road-Stream Crossings: Ecological Considerations in the Design of River and Stream Crossings.” 20-29 International Conference of Ecology and Transportation, Lake Placid, New York.

Kilgore, Roger T., Bergendahl, Bart S., and Hotchkiss, Rollin H. Publication No. FHWAHIF-11-008 HEC-26. Culvert Design for Aquatic Organism Passage Hydraulic Engineering Circular Number 26. October 2010.