Understanding and Addressing Invasive Species

Photo from: New York State Department of Environmental Conservation, water chestnut bed at Beacon

Spring is officially here! Tulips will soon be emerging from the ground, buds blossoming on trees and, unfortunately, invasive plant species will begin their annual growing cycle. No type of habitat or region of the globe is immune to the threat of invasive species (“invasives”). Invasives create major impacts on ecosystems throughout the world, and freshwater ecosystems and estuaries are especially vulnerable because the establishment of such species in these habitats is difficult to contain and reverse.

This blog provides an introduction to invasive aquatic species, including information that will help you prevent the spread of invasives in the waterways of your community.

Defining Invasive Species

Invasive species can be defined as non-native occurring in an ecosystem that is outside its actual natural or native distributional range. Although the colonization of an ecosystem by non-native species can occur naturally, it is more often a function of human intervention, both deliberate and accidental. For aquatic ecosystems some species have become established as a result of the aquarium trade, fish culture practices and/or transport of plants and animals in the bilge and ballast water of trans-oceanic shipping vessels.

One of the primary reasons invasives are able to thrive, spread rapidly, and outcompete native species is that the environmental checks and predators that control these species in their natural settings are lacking in the ecosystems and habitat in which they become introduced. The subsequent damages they cause occur on many ecological levels including competition for food or habitat (feeding, refuge and/or spawning), direct predation and consumption of native species, introduction of disease or parasites, and other forms of disruption that lead to the replacement of the native species with the invasive species. As a result, invasives very often cause serious harm to the environment, the economy, and even human health. A prominent example is the Emerald Ash Borer, a non-native, invasive beetle that is responsible for the widespread death of ash trees.

As noted above, there are a large number of aquatic invasive species. Some of the more commonly occurring non-native aquatic plant species that impact East Coast lakes, ponds and reservoirs include:

Understanding How Invasives Spread

Either intentionally or unintentionally, people have helped spread invasives around the globe. This is not a recent phenomenon but rather something that has been occurring for centuries. “Intentional introductions,” the deliberate transfer of nuisance species into a new environment, can involve a person pouring their home aquarium into a lake or deliberate actions intended to improve the conditions for various human activities, for example, in agriculture, or to achieve aesthetics not naturally available.

Photo by: Tom Britt/CC Flickr, zebra Mussels adhered to a boat propeller“Unintentional introductions” involve the accidental transfer of invasives, which can happen in many ways, including aquatic species attached to the hull of boats or contained in bilge and ballast water. A high-profile example is the introduction of zebra mussels to North America. Native to Central Asia and parts of Europe, zebra mussels accidentally arrived in the Great Lakes and Hudson River via cargo ships traveling between the regions. The occurrence, density, and distribution of Zebra mussels occurred at an alarming rate, with the species spreading to 20 states in the United States and to Ontario and Quebec in Canada. Due to their reproductive fecundity and filter-feeding ability, they are considered the most devastating aquatic invasive species to invade North American fresh waters. They alter and diminish the plankton communities of the lakes that they colonize leading to a number of cascading trophic impacts that have especially negative consequences on fisheries. Zebra mussel infestations have also been linked to increased cyanobacteria (bluegreen algae) blooms and the occurrence of harmful algae blooms (HABs) that impact drinking water quality, recreational use, and the health of humans, pets, and livestock.

Additionally, higher than average temperatures and changes in rain and snow patterns caused by climate change further enable some invasive plant species to move into new areas. This is exemplified by the increased northly spread of hydrilla (Hydrilla verticillate), a tropical invasive plant species that has migrated since its introduction in Florida in the 1950s to lakes, rivers, and reservoirs throughout the U.S.

Regardless of how any of these invasive species first became established, the thousands of terrestrial and aquatic invasive species introduced into the U.S. have caused major ecological, recreational and economic impacts.

Measuring the Impacts of Invasives

After habitat loss, invasive, non-native species are the second largest threat to biodiversity. According to The Nature Conservancy, “Invasive species have contributed directly to the decline of 42% of the threatened and endangered species in the United States. The annual cost to the nation’s economy is estimated at $120 billion a year, with over 100 million acres (an area roughly the size of California) suffering from invasive plant infestations. Invasive species are a global problem — with the annual cost of impacts and control efforts equaling 5% of the world’s economy.”

Of the $120 billion, about $100 million per year is spent on aquatic invasive plant control to address such deleterious issues as:

  • Human health (West Nile Virus, Zika Virus)
  • Water quality impacts (Canada geese)
  • Potable water supplies (Zebra mussel)
  • Commercial fisheries (Snake head, lamprey, Eurasian ruffe, round goby)
  • Recreational activities (Eurasian watermilfoil, water chestnut, hydrilla)
  • Biodiversity (Purple loosestrife, common reed, Japanese knotweed)

Invasive species can change the food web in an ecosystem by destroying or replacing native food sources. As the National Wildlife Federation explains, “The invasive species may provide little to no food value for native wildlife. Invasive species can also alter the abundance or diversity of species that are important habitat for native wildlife. Additionally, some invasive species are capable of changing the conditions in an ecosystem, such as changing soil chemistry…”

Addressing Invasives

Our native biodiversity is an irreplaceable and valuable treasure. Through a combination of prevention, early detection, eradication, restoration, research and outreach, we can help protect our native heritage from damage by invasive species.

What Can We Do?

  • Reduce the spread
  • Routinely monitor
  • Document and report
  • Spread the word

Reducing the Spread:
The best way to fight invasive species is to prevent them from occurring in the first place. There are a variety of simple things each of us can do to help stop the introduction and spread of invasives.

  • Plant native plants on your property and remove any invasive plants. Before you plant anything, verify with your local nursery and check out this online resource for help in identifying invasive plants.
  • Thoroughly wash your gear and watercraft before and after your trip. Invasives come in many forms – plants, fungi and animals – and even those of microscopic size can cause major damage.
  • Don’t release aquarium fish and plants, live bait or other exotic animals into the wild. If you plan to own an exotic pet, do your research to make sure you can commit to looking after it. Look into alternatives to live bait.

Monitoring:
The Lake Hopatcong Foundation Water Chestnut prevention brochureInvasive plant monitoring is one of the most valuable site­-level activities people can support. Contact your local watershed organizations to inquire about watershed monitoring volunteer opportunities. For example, the Lake Hopatcong “Water Scouts” program was established to seek out and remove any instances of the invasive water chestnut species.

If you are a lake or watershed manager, the best way to begin an invasive plant monitoring project is with an expert invasive plant survey to determine which invasives are most likely to be problematic in your watershed and identify the watershed’s most vulnerable areas. Contact us to learn more.

 

Documenting and Reporting:
It’s important to learn to identify invasive species in your area and report any sightings to your county extension agent or local land manager. For example, in New Jersey there is the Invasive Species Strike Team that tracks the spread of terrestrial and aquatic invasives and works with local communities in the management of these species. Additionally, consider developing a stewardship plan for your community to help preserve its natural resources. Princeton Hydro’s team of natural resource scientists can help you get the ball rolling by preparing stewardship plans focused on controlling invasive species and protecting the long-term health of open spaces, forests habitats, wetlands, and water-quality in your community.

Spreading the word:
Many people still don’t understand the serious implications of invasive species. Education is a crucial step in stopping the spread of invasives, which is why it’s so important to talk with your neighbors, friends and family about the hazards and ecological/economic impacts of invasive species.

Also consider talking with your community lake or watershed manager about hosting an educational workshop where experts can share their knowledge about invasives specific to your area and how best to address them. Princeton Hydro’s Director of Aquatic Programs Dr. Fred Lubnow recently gave a presentation to the Lake Hopatcong Foundation titled, “Invasive Species in Watershed Management.” View it here.

 

We encourage you to share this article and spread your invasive species knowledge so that together we can help stop the introduction and spread of invasive species.

2018 NJ Land Conservation Rally

Last week, the New Jersey Conservation Foundation held its 22nd Annual NJ Land Conservation Rally, a one-day educational conference inviting people to come together around the theme of “preserving open space and farmland in New Jersey.” The conference included 26 training workshops, five roundtable discussions, exhibitors, and a thought-provoking, inspirational keynote address.

“The Nature of Americans” Keynote Address

The keynote was given by David Case, co-author of “The Nature of Americans National Report: Disconnection and Recommendations for Reconnection,” an unprecedented national study of Americans’ relationship to nature. The study, which included 12,000 adults, children between 8 and 12, and parents, reveals an alarming disconnection to nature, but also uncovers widespread opportunities for reconnecting and provides actionable recommendations to open the outdoors for all.

One key finding of the study was that many people reported having meaningful social experiences in nature, but that many people feel “authentic” nature is too far away, expensive, and inaccessible. However, connecting with nature, along with family or friends, can be as simple as going on a walk in the neighborhood or planting flowers together. As David emphasized in his presentation, if used effectively, the findings from this study can push everyone towards a better relationship with nature, which will in turn create a better tomorrow for future generations.

Scroll down to learn more about David. 

Princeton Hydro, a proud sponsor of the rally, gave two presentations during the conference: “Recognizing The Power of Dam Removal To Reconnect & Restore Our Ecosystem” and “Nonprofit Social Media Hacks.”

“Recognizing The Power of Dam Removal To Reconnect & Restore Our Ecosystem”

This presentation, which was given by The Nature Conservancy’s River Restoration Manager Beth Styler Barry and Princeton Hydro’s Director of Engineering Services Mary Paist-Goldman, P.E., posed a critical and complicated question to workshop participants: As the dams in our country age, should we continue to repair and maintain the dams or should we remove them?

The decision for dam owners and communities often comes down to several factors: current use, cost, and the potential environmental impacts and/or ecological benefits of removal. Dam removal can help restore the river and reconnect the floodplain, yet it’s often a complicated process. Beth and Mary, who are experts in dam removal and restoration, shared with workshop participants the most effective ways to approach a comprehensive, all-inclusive dam removal in New Jersey, with particular emphasis on the Musconetcong Watershed. The presentation reflected the presenters’ deep understanding of how to best restore complexity and dynamic function to river systems while incorporating the community’s concerns.

Scroll down learn more about the presenters.

Nonprofit Social Media Hacks”

Designed for social media beginners and experts alike, this presentation, by NJ Land Rally Planning Committee member Lindsay McNamara and Princeton Hydro’s Communication Strategist Dana Patterson, covered cross-channel techniques to help organizations increase engagement, event attendance, and social buzz.

The 30 participants attending the workshop received recommendations on thorough, but free social media management tools, and learned how to efficiently measure social media analytics on a regular basis, utilize apps for creating polished graphics and content for social media, develop strategies for curating content from supporters and volunteers, and the no-hassle way to add Instagram takeovers to a communications calendar.

For a free presentation download, click here! And, scroll down to learn more about the presenters.

Presenter Bios:

Learn more about Keynote Speaker David Case:
Dave launched DJ Case & Associates in 1986 based on the premise that there is a need to apply the art and science of communication disciplines to the critically important science of natural resource conservation and environmental protection. Since that time, he has worked with nearly every state and federal natural resources agency in the U.S. Dave’s early-career work as a biologist and then media personality opened his eyes to the importance of communication disciplines to achieving conservation goals. He worked for the National Park Service on a remote, forested island in Lake Michigan as part of his master’s work to study impacts of deer overabundance. But, controversy surrounding the management of the island’s deer herd gave Dave a crash course on the “people” side of wildlife management. He took a position with the Kansas Department of Wildlife and Parks and soon was appearing on weekly radio and TV programs, speaking to civic organizations and schools and learning both the art and science of communications. Dave holds a bachelor’s degree in forestry from Purdue University and a master’s degree in wildlife ecology from the University of Michigan.

Learn more about Mary Paist-Goldman, P.E. of Princeton Hydro:
Mary Paist-Goldman has nearly 20 years of experience in water resource engineering. She currently serves as Director of Engineering Services for Princeton Hydro. In her role, she coordinates all engineering services provided by the company. Her attention to detail and creative eye leads to out-of-the-box solutions to complex problems. She has expertise in the fields of stormwater management, regulatory compliance, stream restoration, dam removal, wetland mitigation, and wastewater management. She is a licensed Professional Engineer in four states.

Learn more about Beth Styler Barry of The Nature Conservancy:
Beth Styler Barry joined The Nature Conservancy in October 2016 as River Restoration Manager. She previously served as Executive Director of the Musconetcong Watershed Association, where she worked with landowners and private, state and federal partners on the removal of five dams and other restoration issues on the Musconetcong River. She is now working on the Columbia Dam Removal on the Paulins Kill and a wetlands restoration project in the Hyper Humus Wildlife Management Area. Beth has more than fifteen years’ experience in watershed education and protection issues including work with municipal, county, state and federal government partners.

Learn more about Dana Patterson of Princeton Hydro:
Dana Patterson is a passionate environmental communicator with a strong mix of diverse stakeholder engagement experience and values-based communication strategy. She recently earned her M.E.M. from Yale F&ES and has held a variety of digital media positions including Yale Program on Climate Change Communication, Yale Environment 360, and National Audubon Society. Dana has 5+ years of NGO experience empowering environmental justice communities and currently serves as Princeton Hydro’s Communications Strategist.

Learn more about Lindsay McNamara of the NJ Land Rally planning committee:
Lindsay McNamara is an environmentalist, a birder and blogger, and a member of the NJ Land Rally planning committee, Bergen County Audubon Society, and NJ Emerging Conservation Professionals. Over the last six years, Lindsay has served as a digital media specialist in the environmental nonprofit and higher education sectors. She holds a B.A. in Environmental Studies from the University of Delaware and is pursuing her M.A. in Public and Organizational Relations at Montclair State University.

This Month’s Events: March Update from Princeton Hydro

Princeton Hydro is proud to participate in a number of exciting conferences throughout March. The conferences, which take place in Pennsylvania, New Jersey and Virginia, cover a wide variety of topics centered around protecting water resources.

March 2: New Jersey Conservation Rally

The 22nd Annual NJ Land Conservation Rally is a one-day educational conference about preserving open space and farmland in New Jersey. The event consists of training workshops, roundtable discussions, a keynote speech from David Case, author of “Nature of Americans,” exhibitors, and a farmers market.

Princeton Hydro, a proud sponsor of the rally, is giving two presentations:
  • “Recognizing The Power of Dam Removal To Reconnect & Restore Our Ecosystem”
    The Nature Conservancy ’s River Restoration Manager Beth Styler Barry and Princeton Hydro’sDirector of Engineering Services Mary Paist-Goldman , P.E. will present the most effective ways to approach a comprehensive, all-inclusive dam removal in New Jersey, with particular emphasis on the Musconetcong Watershed.
  • “Nonprofit Social Media Hacks”
    Rally Planning Committee member Lindsay McNamara and Communication Strategist for Princeton Hydro Dana Patterson present ways to punch up your social media presence. The course is designed for social media beginners and experts alike, and will cover cross-channel techniques to help increase engagement, event attendance, and social buzz around your organization.

LEARN MORE & REGISTER

 

March 4 – 6: Virginia Water Conference

Held by the Virginia Lakes and Watershed Associationand the Virginia Floodplain Management Association, the Virginia Water Conference will host 400 participants, and will include exhibits and breakout sessions on topics ranging from floodplain management to dam safety to water resource engineering.

Princeton Hydro’s Dr. Fred Lubnow, Director of Aquatic Programs, and Michael Hartshorne, Senior Limnologist, are conducting a Water Quality and Quantity breakout session titled,  “A Limnological Assessment of a 250-Acre Impoundment in Virginia for the Consideration of Nutrient Inactivation.”

LEARN MORE & REGISTER

 

March 7 – 8: PA Lake Management Society Conference

The Pennsylvania Lake Management Society is hosting its 28th annual conference during which lake professionals, students, recreation enthusiasts, lakeside residents and community members will come together to explore a variety of topics related to managing lakes and reservoirs. Visit the Princeton Hydro booth to discuss the latest advancements in pond, lake and watershed management.

The conference offers a collection of professional presentations, workshops and panel discussions. Princeton Hydro is giving two presentations during the conference:

  • “Continued Management of Hydrilla in Harveys Lake, Luzerne County, Pennsylvania”
    Lead by Michael Hartshorne, Senior Limnologist, and Scott Churm, Associate: Director of Aquatic Operations
  • “Conducting a Nutrient Inactivation Treatment for Internal Phosphorus Load Control for a Small Glacial Lake in Northern Pennsylvania”
    Lead by Dr. Fred Lubnow, Director of Aquatics Programs

LEARN MORE & REGISTER

 

March 10: Schuylkill Watershed Congress

The Watershed Congress is an annual event that seeks to advance the best available information and techniques for protecting and restoring watersheds by combining science, policy, and practical applications into one program.

The one-day conference offers a keynote discussion on Landscape-Scale Forest Loss in the Delaware Basin, 21 concurrent sessions covering a broad range of watershed topics, poster sessions and exhibits. Dr. Fred Lubnow‘s breakout session, titled “Ecology/Management of Cyanotoxin Producing Blue-Green Algae in the Schuylkill River,” reviews the basic ecology of nuisance blue-green algae and how to monitor, manage and prevent cyanotoxins particularly in potable water supplies.

LEARN MORE & REGISTER

 

March 15: Land Ethics Symposium

The theme for this year’s 18th Annual Land Ethics Symposium, which is presented by Bowman’s Hill Wildflower Preserve, is “Creative Approaches for Ecological Landscaping.” The conference will focus on ways to create low-maintenance, economical and ecologically balanced landscapes using native plants and restoration techniques.

Participants can take part in presentations, for which continuing education credits are available, on topics, including Installation and Management of Stormwater Basins, Landscaping for Carbon Storage and Resilience, and Watershed Restoration. The conference also offers a variety of networking events and an exhibitor hall. Princeton Hydro, a “Friends Sponsor” of the event, will have an exhibitor table. We hope to see you there!

LEARN MORE & REGISTER

 

March 19: SAME Philadelphia Post Small Business Conference

The Philadelphia Post is hosting its 12th Annual Small Business Conference and Industry Day, which aims to promote engagement between agency, industry, and small businesses. The program consists of networking events, small business exhibits, a variety of speakers and much more.

The Society of American Military Engineers (SAME) gives leaders from the A/E/C, environmental, and facility management industries the opportunity to come together with federal agencies in order to showcase best practices and highlight future opportunities for small businesses to work in the federal market. If you’re in attendance, please stop by the Princeton Hydro booth.

LEARN MORE & REGISTER

New Video Celebrates 50th Anniversary of Wild & Scenic Rivers Act

Credit: NPS.gov

Communities across the nation are preparing to celebrate the 50th anniversary of the Wild and Scenic Rivers Act. This landmark legislation passed by Congress in October 1968 safeguards the free-flowing character of rivers by precluding them from being dammed, while allowing the public to enjoy them. It encourages river management and promotes public participation in protecting streams.

As part of the celebration, the National Park Service released a new video highlighting a handful of ‘Wild and Scenic’ designated rivers in the Northeast – the Farmington, Sudbury, Assabet, Concord, and Musconetcong Rivers – along with the organizations and community volunteers who work together to protect and care for these rivers.

Princeton Hydro is proud to work with two of the river stewards featured in the video: Musconetcong Watershed Association (MWA) and Farmington River Watershed Association (FRWA).

The Musconetcong River:

Designated ‘Wild and Scenic’ in 2006, the Musconetcong River is a 45.7-mile-long tributary of the Delaware River in northwestern New Jersey.

Princeton Hydro has been working with MWA in the areas of river restoration, dam removal, and engineering consulting since 2003 when the efforts to remove the Gruendyke Mill Dam in Hackettstown, NJ began. To date, Princeton Hydro has worked with MWA to remove five dams on the Musconetcong River, the most recent being the Hughesville Dam.

As noted in the video, the removal of these dams, especially the Hughesville dam, was a major milestone in restoring migratory fish passage along the Musconetcong. Only a year after the completion of the dam removal, American shad returned to the “Musky” for the first time in 250 years.

“The direction the river is moving bodes well for its recovery,” said Princeton Hydro President Geoff Goll, P.E., who was interviewed in the 50th anniversary video. “This multidisciplinary approach using ecology and engineering, paired with a dynamic stakeholder partnership, lead to a successful river restoration, where native fish populations returned within a year. ”

The Farmington River:

The Upper Farmington River, designated as ‘Wild and Scenic’ in 1994, stretches 14-miles through Connecticut starting above Riverton through the New Hardford/Canton town line. The river is important for outdoor recreation and provides critical habitat for countless wildlife.

Credit: FWRA.orgBack in 2012, Princeton Hydro worked with the FRWA and its project partners to remove the Spoonville Dam. Built in 1899 on the site of a natural 25-foot drop in the riverbed, the dam was originally a hydropower facility. The hurricanes and flood of 1955 breached the dam, opening a 45-foot gap and scattering massive dam fragments in the riverbed downstream. The remnant of the main dam persisted for decades as a 128-foot long, 25-foot high obstacle in the channel. The river poured through the breach in a steep chute that stopped American shad from proceeding further upstream to spawn.

The project was completed, from initial site investigation through engineering assessment and final design, in just six months. The dam removal helped to restore historic fish migrations in the Farmington River (including the American shad) and increase recreation opportunities.

Wild & Scenic Rivers Act:

Credit: NPS.govAs of December 2014 (the last designation), the National ‘Wild and Scenic’ System protects 12,734 miles of 208 rivers in 40 states and the Commonwealth of Puerto Rico; this is a little more than one-quarter of 1% of the nation’s rivers. By comparison, more than 75,000 large dams across the country have modified at least 600,000 miles, or about 17%, of American rivers.

In honor of the 50th anniversary of the Act and in an effort to designate many more miles of river as ‘Wild and Scenic,’ four federal agencies and four nonprofit groups are coordinating nationwide events and outreach. Managing agencies are the Bureau of Land ManagementFish and Wildlife ServiceForest Service, and National Park Service, along with American RiversAmerican WhitewaterRiver Network and River Management Society. Go here for more info: www.wildandscenicrivers50.us.

Lake Mohawk Country Club Publication Features Princeton Hydro

The Lake Mohawk Country Club (LMCC) recently published an article in The Papoose, the organization’s newsletter, that featured Princeton Hydro Founder Dr. Steve Souza and announced that he received the North American Lake Management Society’s “2017 Lake Management Success Stories Award” for his work with Lake Mohawk.

The award specifically recognizes the exceptional service provided to Lake Mohawk, the New Jersey Coalition of Lake Associations (NJCOLA) and the Lake Mohawk Preservation Foundation (LMPF). The nomination for the award was submitted by Barbara Wortmann, Interim GM of the LMCC, Ernest Hofer PE, Science Advisor to LMPF and Board President of NJCOLA, and the full Board of Trustees of NJCOLA.

As the article states, Steve and the Princeton Hydro team have worked to develop and implement successful lake management strategies to restore and protect the health of the lake and its surrounding watershed. Lake Mohawk is now a role model for all of New Jersey’s lakes.

While accepting his award Dr. Souza stated, “this would not have been possible had it not been for the foresight of the Lake Mohawk Country Club and the support we have received over the years from the Lake Board, the current General Manager Barbara Wortmann, Steve Waehler and the Lake Committee, Ernie Hofer and Gene DePerz of the Lake Mohawk Preservation Foundation, and of course the late Fran Smith.” Steve went on to thank his staff at Princeton Hydro, especially Chris Mikolajczyk, CLM and Dr. Fred Lubnow, for their efforts over the years.

More About Lake Mohawk Lake Restoration:

Nutrient pollution is one of the main problems affecting lakes throughout the United States. In small amounts, nitrates and phosphates can be beneficial to many ecosystems. However, in excessive amounts, nutrients cause eutrophication. Eutrophication stimulates an explosive growth of algae (algal blooms) that depletes the water of oxygen and cause serious water quality issues. Lake Mohawk was suffering from eutrophication issues.

In the early 1990’s, Princeton Hydro was contracted by the LMCC to conduct a detailed water quality and trophic state assessment of the lake. The data was used to prepare a comprehensive lake management master plan.

A unique element of the plan was the design and installation of a “one-of-a-kind” continual, dosing alum pumping system, which reduced and controlled the lake’s sizable internal total phosphorus load and the phosphorus originating from stormwater and other external sources. This innovative nutrient control program was the first of its kind in New Jersey, and, to this day, remains in operation and is the foundation of the lake’s restoration. Following suit from Lake Mohawk’s success, a similar system was also designed and installed in White Meadow Lake and that system is also largely responsible for its restoration.

The success of this program was recognized by the USEPA through an Environmental Excellence Award, by the NJDEP through an Environmental Initiative Award, by the NALMS through a Technical Merit Award, and now by NALMS with the 2017 Lake Management Success Stories Award.

Read more about the accomplishments at Lake Mohawk in the LMCC’s recent Papoose newsletter.

 

AQUATIC ORGANISM PASSAGE: A PRINCETON HYDRO BLOG SERIES

Welcome to the second installment of Princeton Hydro’s multi-part blog series about aquatic organism passage.

What you’ll learn:

  • How does promoting aquatic organism passage benefit ecosystems as a whole?
  • How can others, including people, benefit from aquatic organism passage?
  • How has Princeton Hydro supported it?

Photo by Princeton Hydro Founder Steve Souza

Fostering Ecological Balance in Food Webs

A major consequence of poorly designed culverts published in the NRCS' "Federal Stream Corridor Restoration Handbook"is the destabilization of food webs. Sufficient predators and prey must exist to maintain a balanced food web. For example, freshwater mussels (Unionidae) are a common snack among fish. A mussel’s life cycle involves using certain fish as a host for their larvae until these microscopic juveniles mature into their adult forms and drop off. During this period, the host fish will travel, effectively transporting a future food source with it.

In the presence of habitat fragmentation, the isolation of these symbiotic relationships can be devastating. Some mussel species rely on a small circle of fish species as their hosts, and conversely, some fish species rely on specific mussel species as their food. If a fish species is separated from its mussel partner, food shortages owing to a declining adult mussel population can occur.

Widespread Benefits to Flora, Fauna, and People

A shift in the 1980s recognized the importance of redesigning road-stream crossings for several reasons, including restoring aquatic organism passage and maintaining flood resiliency. Replacing culverts with larger structures that better facilitate the movement of both water and aquatic organisms benefit all species. Roads constructed over streams allow people to travel across natural landscapes while culverts that are fish-friendly convey water at a rate similar to the surrounding landscape, reducing scour in stream beds.

A man fly fishes as his dog sits by his side at Ken Lockwood Gorge, Hunterdon County. Photo from State of New Jersey website.

Fish, as well as semi-terrestrial organisms like crabs and salamanders, can take advantage of more natural stream environments and complete their migrations. Anglers appreciate healthy, plentiful fish populations nearly as much as the fish themselves. Recreation and economic growth also improve when streams regain the aquatic biological communities once lost through habitat fragmentation. According to USFWS, for every dollar spent on restoration through the Partners for Fish and Wildlife Program and Coastal Program Restoration Project, states gain $1.90 of economic activity. Stream restoration improves fish and wildlife habitat, which directly supports and enhances recreation opportunities for outdoor enthusiasts thus resulting in increased tourism-related spending and job growth.

Aquatic Organism Passage in Action at Princeton Hydro

Princeton Hydro recently completed a project to facilitate aquatic organism passage for river herring in Red Brook in Plymouth, Massachusetts. Read all about it here!

For an introduction to aquatic organism passage, be sure to check out the first post in this multipart-series.

Sources:

“Aquatic Organism Passage through Bridges and Culverts.” Flow. Vermont Department of Environmental Conservation’s Watershed Management Division, 31 Jan. 2014. Web. 14 Mar. 2017.

Hoffman, R.L., Dunham, J.B., and Hansen, B.P., eds., 2012, Aquatic organism passage at road-stream crossings— Synthesis and guidelines for effectiveness monitoring: U.S. Geological Survey Open-File Report 2012-1090, 64 p.

Jackson, S., 2003. “Design and Construction of Aquatic Organism Passage at Road-Stream Crossings: Ecological Considerations in the Design of River and Stream Crossings.” 20-29 International Conference of Ecology and Transportation, Lake Placid, New York.

Kilgore, Roger T., Bergendahl, Bart S., and Hotchkiss, Rollin H. Publication No. FHWAHIF-11-008 HEC-26. Culvert Design for Aquatic Organism Passage Hydraulic Engineering Circular Number 26. October 2010.

Michigan Natural Features Inventory. Freshwater Mussels of Michigan. Michigan State University, 2005.

 

Improving Water Quality & Reducing Habitat Loss with Floating Wetland Islands

Floating Wetland Islands (FWI), also known as floating treatment wetlands, are an effective alternative to large, watershed-based, natural wetlands. Often described as self-sustaining, FWIs provide numerous ecological benefits. They assimilate and remove excess nutrients that could fuel algae growth; provide habitat for fish and other aquatic organisms; help mitigate wave and wind erosion impacts; provide an aesthetic element; and can be part of a holistic lake/pond management strategy. FWIs are also highly adaptable and can be sized, configured and planted to fit the needs of nearly any lakepond or reservoir.

Princeton Hydro Senior Scientist Katie Walston recently completed the Floating Island International (FII) Floating Wetland Master Seminar. The seminar provided participants with an in-depth look at the various technologies and products FII offers. Through hands-on examples, course participants learned how to utilize wetland islands for fisheries enhancement, stormwater management, shoreline preservation, wastewater treatment and more.

“The Master Seminar was truly valuable both personally and professionally,” said Katie. “I learned a tremendous amount and thoroughly enjoyed the experience. It’s very fulfilling knowing that I can take the knowledge I’ve learned back to Princeton Hydro and make positive impacts for our clients.”

FII was launched by inventor and outdoorsman Bruce Kania who was driven by the desire to reverse the decline of wetland habitats by developing a new and natural stewardship tool that could clean water and, in the process, improve life for all living creatures. He found that the answer lies in Biomimicry: duplicating nature’s processes in a sustainable, efficient and powerful way to achieve impeccable environmental stewardship for the benefit of all life.

Bruce brought together a team of engineers and plant specialists and created BioHaven® floating islands. These islands biomimic natural floating islands to create a “concentrated” wetland effect. Independent laboratory tests show removal rates far in excess of previously published data: 20 times more nitrate, 10 times more phosphate and 11 times more ammonia, using unplanted islands. They are also extremely effective at reducing total suspended solids and dissolved organic carbon in waterways.

Due to population growth, industrialization and climate change, wetlands are at risk of rapidly declining in quantity and quality due. However, every floating wetland island launched by FII provides an effective strategy for mitigating and adapting to the impacts of over development and climate change.

The unique design of BioHaven® floating islands means that 250 square feet of island translates to an acre’s worth of wetland surface area. These versatile floating islands can be launched in either shallow or deep water, and can be securely anchored or tethered to ensure that they remain in a specific location. They are almost infinitely customizable, and can be configured in a variety of ways.

In addition to ongoing prototype development, FII offers licensing opportunities to businesses and production facilities worldwide. FII continues to research and develop collaborative pilot projects to quantify BioHaven® floating islands’ efficacy.

Many thanks to Bruce and Anne Kania for hosting the Floating Wetland Master Seminar and inspiring action through their knowledge, passion and ongoing endeavors.

 

Princeton Hydro Founder Invited to Speak at EPA’s Harmful Algal Blooms Workshop

Princeton Hydro Founder Dr. Steve Souza was an invited speaker at the USEPA Region 2 Freshwater Harmful Algal Blooms (HABs) and Public Drinking Water Systems workshop last week in Manhattan. The objective of the workshop was to share information about the monitoring and assessment of freshwater HABs and the efforts to minimize their effect on public drinking water and the recreational uses of lakes.

Steve’s presentation focused on the proactive management of HABs, providing useful tips for and real-world examples of how to address HABs before they manifest, and, if a HAB does manifest, how to prevent it from further exacerbating water quality and cyanotoxin problems.

The workshop was well attended with 80 people on site and 40 others participating via webinar link. Steve was joined by nine other invited speakers, most of whom were representing the USEPA, NYSDEC and NJDEP, who gave presentations on a variety of HABs related topics, including the optimization of water treatment operations to minimize cyanotoxin risks surveillance and assessment of HABs, and communicating HABs risks in recreational lakes and drinking water reservoirs.

If you’re interested in learning more about HABs, you can view a complete copy of Steve’s presentation, titled Proactive Management of Harmful Algae Blooms in Drinking Water and Recreational Waterbodies, by clicking the image below. Please contact us anytime to discuss how Princeton Hydro’s Invasive Weed and Algae Management Services can be of service to you.

The USEPA Region 2 serves New Jersey, New York, Puerto Rico, the U.S. Virgin Islands, and eight tribal nations. Get more info on key issues and initiatives in USEPA Region 2.

 

 

Princeton Hydro Dam Removal Work Featured at Brazilian Workshop

As Brazil is in the midst of a dam-building boom, scientists and engineers gathered at a workshop in Brazil to discuss, “Dam Removal & Optimizing Hydro Locations to Benefit Species Diversity in Brazil.”

Laura Wildman, P.E., Water Resources and Fisheries Engineer and Director of Princeton Hydro’s New England Regional Office, was invited to speak at the workshop. Her presentation focused on why we remove dams in the U.S. (the key drivers), how we analyze them for removal, and what we are learning through a wide diversity of completed case studies.

“It was fascinating to discuss a topic, such as the removal of dams, right as Brazil is focusing on building more hydro capacity,” said Laura. “Hopefully it is a sign that the hydro industry in Brazil, along with all the great Brazilian fisheries researchers, are quite forward thinking and are determined to maintain their country’s rich species diversity while also enhancing their energy options.”

The workshop, hosted by CEMIG and held at UFMG, involved many universities, including our workshop host Paulo Pompeu from UFLA, Dr. Paul Kemp from University of Southhampton, Dr. Jesse O’Hanley of Kent Business School, and many others.

The gathering inspired a lot of interesting dialogue around dam removal, optimizing locations for new hydro facilities, and how to best sustain connectivity and species diversity. Laura’s presentation entitled “Dam removal in the United States” along with the other conference presentations will be available on the CEMIG website soon or check back here on the Princeton Hydro blog for presentation links.

Aquatic Organism Passage: A Princeton Hydro Blog Series

Introducing part one of a multi-part blog series about aquatic organism passage
What you’ll learn:
  • What is aquatic organism passage?
  • Why is it important?
  • How does Princeton Hydro support it?

This photo from NYS DEC demonstrates a well-designed stream crossing.

Since the US government began allotting funds for building roads in U.S. national forests in the late 1920s, hundreds of thousands of culverts were built across the country. Culverts, or drainage structures that convey water underneath a barrier such as a road or railroad, were originally built with the intention of moving water quickly and efficiently. While this goal was met, many migratory fish and other aquatic organisms could not overcome the culverts’ high-velocity flows, sending them away from their migratory destinations. If the culvert was perched, or elevated above the water surface, it would require the migratory aquatic animals to both leap upwards and fight the unnaturally fast stream current to continue their journeys. Additionally, turbulence, low flows, and debris challenged the movement of aquatic organisms.

Thus, the goal of aquatic organism passage (AOP) is to maintain connectivity by allowing aquatic organisms to migrate upstream or downstream under roads. AOP “has a profound influence on the movement, distribution and abundance of populations of aquatic species in rivers and streams”. These aforementioned species include “fish, aquatic reptiles and amphibians, and the insects that live in the stream bed and are the food source for fish”.

This photo from NYS DEC demonstrates a poorly-designed stream crossing.

A poorly designed culvert can harm fish populations in multiple ways. If sturgeon aren’t able to surpass it, habitat fragmentation prevails. And so, a once-connected habitat for thousands of sturgeon breaks into isolated areas where a few hundred now live. When the population was in the thousands, a disease that wiped out 80% of the population would still leave a viable number of individuals left to survive and mate; a population of a few hundred will be severely hurt by such an event. In sum, habitat fragmentation raises the risk of local extinction (extirpation) as well as extinction in general.

The splintering of a large population into several smaller ones can also leave species more vulnerable to invasive species. Generally, the greater the biodiversity harbored in a population, the stronger its response will be against a disturbance. A dwindling community of a few hundred herring will likely succumb to an invasive who preys on it while a larger, more robust community of a few thousand herring has a greater chance of containing some individuals who can outcompete the invasive.

Aquatic Organism Passage in Action at Princeton Hydro

Princeton Hydro recently teamed up with Trout Unlimited to reconnect streams within a prized central-Pennsylvanian trout fishery.  Our team enabled aquatic organism passage by replacing two culverts in Pennsylvania’s Cross Fork Creek. Read about it here!

Sources:

“Aquatic Organism Passage through Bridges and Culverts.” Flow. Vermont Department of Environmental Conservation’s Watershed Management Division, 31 Jan. 2014. Web. 14 Mar. 2017.

Hoffman, R.L., Dunham, J.B., and Hansen, B.P., eds., 2012, Aquatic organism passage at road-stream crossings— Synthesis and guidelines for effectiveness monitoring: US Geological Survey Open-File Report 2012-1090, 64p.

Jackson, S., 2003. “Design and Construction of Aquatic Organism Passage at Road-Stream Crossings: Ecological Considerations in the Design of River and Stream Crossings.” 20-29 International Conference of Ecology and Transportation, Lake Placid, New York.

Kilgore, Roger T., Bergendahl, Bart S., and Hotchkiss, Rollin H. Publication No. FHWAHIF-11-008 HEC-26. Culvert Design for Aquatic Organism Passage Hydraulic Engineering Circular Number 26. October 2010.