Four Ways Climate Change Could Affect Your Lake

The Local Effects of Climate Change Observed Through our Community Lakes

Climate change is an enormous concept that can be hard to wrap your head around. It comes in the form of melting ice caps, stronger storms and more extreme seasonal temperatures. If you’re an avid angler, photographer, swimmer, boater or nature enthusiast, it’s likely that because of climate change you’ll bear witness to astonishing shifts in nature throughout the greater portion of your lifetime. This is especially true with respect to lakes.

2015-07-07-10-01-20Lakes are living laboratories through which we can observe the local effects of climate change in our own communities. Lake ecosystems are defined by a combination of various abiotic and biotic factors. Changes in hydrology, water chemistry, biology or physical properties of a lake can have cascading consequences that may rapidly alter the overall properties of a lake. Most of the time the results are negative and the impacts severe. Recognizing and monitoring the changes that are taking place locally brings the problems of climate change closer to home, which can help raise awareness and inspire environmentally-minded action.

Princeton Hydro has put together a list of four inter-related, climate change induced environmental impacts that can affect lakes and lake communities:

1. Higher temperatures = shifts in flora and fauna populations

The survival of many lake organisms is dependent on the existence of set temperature ranges and ample oxygen levels. The amount of dissolved oxygen (DO) present in a lake is a result of oxygen diffusion from the atmosphere and its production by algae and aquatic plants via photosynthesis. An inverse relationship exists between water temperature and DO concentrations. Due to the physical properties of water, warmer water holds less DO than cooler water.

This is not good news for many flora and fauna, such as fish that can only survive and reproduce in waters of specific temperatures and DO levels. Lower oxygen levels can reduce their ability to feed, spawn and survive. Populations of cold water fishes, such as brown trout and salmon, will be jeopardized by climate change (Kernan, 2015).

358-001-carp-from-churchvilleAlso consider the effects of changing DO levels on fishes that can tolerate these challenging conditions. They will thrive where others struggle, taking advantage of their superior fitness by expanding their area of colonization, increasing population size, and/or becoming a more dominant species in the ecosystem. A big fish in a little pond, you might say. Carp is a common example of a thermo-tolerant fish that can quickly colonize and dominate a lake’s fishery, in the process causing tremendous ecological impact (Kernan, 2010).

2. Less water availability = increased salinity

Just as fish and other aquatic organisms require specific ranges of temperature and dissolved oxygen to exist, they must also live in waters of specific salinity. Droughts are occurring worldwide in greater frequency and intensity. The lack of rain reduces inflow and higher temperatures promote increased evaporation. Diminishing inflow and dropping lake levels are affecting some lakes by concentrating dissolved minerals and increasing their salinity.

Studies of zooplankton, crustaceans and benthic insects have provided evidence of the consequences of elevated salinity levels on organismal health, reproduction and mortality (Hall and Burns, 2002; Herbst, 2013; Schallenberg et al., 2003). While salinity is not directly related to the fitness or survival rate of all aquatic organisms, an increase in salinity does tend to be stressful for many.

3. Nutrient concentrations = increased frequency of harmful algal blooms

Phosphorus is a major nutrient in determining lake health. Too little phosphorus can restrict biological growth, whereas an excess can promote unbounded proliferation of algae and aquatic plants.

before_strawbridgelake2If lake or pond water becomes anoxic at the sediment-water interface (meaning the water has very low or completely zero DO), phosphorus will be released from the sediment. Also some invasive plant species can actually “pump” phosphorus from the sediments and release this excess into the water column (termed luxurious uptake). This internally released and recycled sedimentary phosphorus can greatly influence lake productivity and increase the frequency, magnitude and duration of algae blooms. Rising water temperatures, declining DO and the proliferation of invasive plants are all outcomes of climate change and can lead to increases in a lake’s phosphorus concentrations and the subsequent growth and development of algae and aquatic plants.

Rising water temperatures significantly facilitate and support the development of cyanobacteria (bluegreen algae) blooms. These blooms are also fueled by increasing internal and external phosphorus loading. At very high densities, cyanobacteria may attain harmful algae bloom (HAB) proportions. Elevated concentrations of cyanotoxins may then be produced, and these compounds seriously impact the health of humans, pets and livestock.

rain-garden-imagePhosphorus loading in our local waterways also comes from nonpoint sources, especially stormwater runoff. Climate change is recognized to increase the frequency and magnitude of storm events. Larger storms intensify the mobilization and transport of pollutants from the watershed’s surrounding lakes, thus leading to an increase in nonpoint source loading. Additionally, larger storms cause erosion and instability of streams, again adding to the influx of more phosphorus to our lakes. Shifts in our regular behaviors with regards to fertilizer usage, gardening practices and community clean-ups, as well as the implementation of green-infrastructure stormwater management measures can help decrease storm-related phosphorus loading and lessen the occurrence of HABs.

4. Cumulative effects = invasive species

A lake ecosystem stressed by agents such as disturbance or eutrophication can be even more susceptible to invasive species colonization, a concept coined “invasibility” (Kernan, 2015).

For example, imagine that cold water fish species A has experienced a 50% population decrease as a result of warming water temperatures over ten years. Consequently, the fish’s main prey, species B, has also undergone rapid changes in its population structure. Inversely, it has boomed without its major predator to keep it in check. Following this pattern, the next species level down – species B’s prey, species C – has decreased in population due to intense predation by species B, and so on. Although the ecosystem can potentially achieve equilibrium, it remains in a very unstable and ecologically stressful state for a prolonged period of time. This leads to major changes in the biotic assemblage of the lake and trickle-down changes that affect its recreational use, water quality and aesthetics.

• • •

Although your favorite lake may not experience all or some of these challenges, it is crucial to be aware of the many ways that climate change impacts the Earth. We can’t foresee exactly how much will change, but we can prepare ourselves to adapt to and aid our planet. How to start? Get directly involved in the management of your lake and pond. Decrease nutrient loading and conserve water. Act locally, but think globally. Get out and spread enthusiasm for appreciating and protecting lake ecosystems. Also, check out these tips for improving your lake’s water quality.


References

  1. Hall, Catherine J., and Carolyn W. Burns. “Mortality and Growth Responses of Daphnia Carinata to Increases in Temperature and Salinity.” Freshwater Biology 47.3 (2002): 451-58. Wiley. Web. 17 Oct. 2016.
  1. Herbst, David B. “Defining Salinity Limits on the Survival and Growth of Benthic Insects for the Conservation Management of Saline Walker Lake, Nevada, USA.” Journal of Insect Conservation 17.5 (2013): 877-83. 23 Apr. 2013. Web. 17 Oct. 2016.
  1. Kernan, M. “Climate Change and the Impact of Invasive Species on Aquatic Ecosystems.” Aquatic Ecosystem Health & Management (2015): 321-33. Taylor & Francis Online. Web. 17 Oct. 2016.
  1. Kernan, M. R., R. W. Battarbee, and Brian Moss. “Interaction of Climate Change and Eutrophication.” Climate Change Impacts on Freshwater Ecosystems. 1st ed. Chichester, West Sussex, UK: Wiley-Blackwell, 2010. 119-51. ResearchGate. Web. 17 Oct. 2016.
  1. Schallenberg, Marc, Catherine J. Hall, and Carolyn W. Burns. “Consequences of Climate-induced Salinity Increases on Zooplankton Abundance and Diversity in Coastal Lakes”Marine Ecology Progress Series 251 (2003): 181-89. Inter-Research Science Center. Inter-Research. Web. 17

Stormwater Projects in Action

Improving Barnegat Bay through Green Infrastructure and Stormwater Management

FREE BROCHURE DOWNLOAD

American Littoral Society, Ocean County Soil Conservation District and Princeton Hydro recently held a Stormwater Projects in Action workshop. The workshop focused on a number of 319(h) funded projects designed by Princeton Hydro and implemented by American Littoral Society in the Long Swamp Creek/Lower Toms River sub-watersheds of Barnegat Bay. Those projects exemplified how green infrastructure techniques could be used to retrofit, upgrade and compliment standard stormwater management methods. This included the restoration of healthy soils and the construction/installation of bioretention basins, rain gardens, porous pavement, and sub-surface Manufactured Treatment Devices (MTDs).

Event participants learned about the problems affecting Barnegat Bay due to over-development and improper stormwater management. They were presented with examples of the types of green infrastructure solutions that can be implemented in any setting in order to achieve cleaner water and less flooding.

A brochure detailing each of the projects and providing an in-depth look at the incredible work being done to save Barnegat Bay was distributed to event attendees. You can download your free copy here:

screen-shot-2016-10-05-at-8-58-55-am

Princeton Hydro President Dr. Stephen Souza gave two presentations at the event. The first presentation explored the Matrix Scoring Tool that Princeton Hydro’s Senior Environmental Scientist Paul Cooper along with Dr. Souza developed to quantitatively evaluate the relative benefit of conducting one stormwater project versus another in a particular area. The 2nd presentation provided an overview of the five stormwater improvement projects that Princeton Hydro conducted as part of the $1,000,000 319(h) grant secured for American Littoral Society. If you’re interested in receiving a copy of either presentation, submit a comment below or email us.

Clean water is fundamental to all life.

 

 

Enjoy Your Labor Day Adventures Responsibly

Princeton Hydro Offers
Seven Tips for Environmentally-Friendly Outdoor Fun

 

Labor Day is right around the corner! Many people will soon be packing up the car with fishing gear, and heading to their favorite lake for a fun-filled weekend.

As biologists, scientists and outdoor enthusiasts, all of us at Princeton Hydro fully enjoy getting outside and having fun in nature. We also take our responsibility to care for and respect our natural surroundings very seriously. We play hard and work hard to protect our natural resources for generations to come.

These seven tips will help you enjoy your Labor Day fishing, boating and outdoor adventures with minimal environmental impact:

  • Before you go, know your local fishing regulations. These laws protect fish and other aquatic species to ensure that the joys of fishing can be shared by everyone well into the future.
  • Reduce the spread of invasive species by thoroughly washing your gear and watercraft before and after your trip. Invasives come in many forms – plants, fungi and animals – and even those of microscopic size can cause major damage.
  • Stay on designated paths to avoid disrupting sensitive and protected areas, like wetlands, shorelines, stream banks and meadows. Disturbing and damaging these sensitive areas can jeopardize the health of the many important species living there.
  • Exercise catch and release best practices. Always keep the health of the fish at the forefront of your activities by using the right gear and employing proper techniques. Get that info by clicking here
  • Use artificial lures or bait that is native to the area you’re fishing in. Live bait that is non-native can introduce invasive species to water sources and cause serious damage to the surrounding environment.
  • Plan ahead and map your trip. Contact the office of land management to learn about permit requirements, area closures and other restrictions. Use this interactive map to find great fishing spots in your area, the fish species you can expect to find at each spot, nearby gear shops, and more!

Armed with these seven tips, you can now enjoy your weekend while feeling rest assured that you’re doing your part to protect the outdoor spaces and wild places we all love to recreate in! Go here to learn about some of the work Princeton Hydro does to restore and protect our natural resources.

120903 Dock
“Respect nature and it will provide you with abundance.”

–compassionkindness.com

Princeton Hydro’s Conservation Spotlight

AMERICAN LITTORAL SOCIETY: SAVING BARNEGAT BAY

This Conservation Spotlight explores and celebrates
the American Littoral Society’s efforts to save Barnegat Bay

Screen Shot 2016-08-22 at 12.18.53 PM

Barnegat Bay stretches 42-miles, primarily along the inner-coast of Ocean County, New Jersey. The “Bay” is nationally recognized as a unique estuarine ecosystem with a variety of different habitats that many species depend on for survival. Due to numerous factors, but especially the development of its watershed and resulting high levels of nitrogen loading from stormwater runoff, the Bay has suffered serious ecological decline.

In an effort to save the Bay, the American Littoral Society developed a multi-faceted Clean Water Project plan, which focuses heavily on one of the Bay’s key issues: eutrophication due to excessive nitrogen loading. In partnership with Princeton Hydro, the Ocean County Soil District and others, American Littoral Society began work to decrease the volume of stormwater runoff and associated pollutants flowing into and damaging the Bay.

Screen Shot 2016-08-22 at 11.58.17 AMIn 2013, American Littoral Society, with assistance provided by Princeton Hydro, successfully secured $1,000,000 in 319(h) implementation funding through the New Jersey Department of Environmental Protection. American Littoral Society then developed an innovative basin ranking matrix. The matrix, created by Princeton Hydro, provides a non-biased, quantitative means of identifying and ranking stormwater management projects having the greatest potential to decrease pollutant loading to the Bay.

With funding secured and a prioritization methodology in place, American Littoral Society then began its work to retrofit antiquated, inefficient stormwater basins throughout the Barnegat Bay watershed. The goal was to reduce runoff through upgraded stormwater management systems emphasizing the application of green infrastructure techniques.

American Littoral Society and Princeton Hydro along with key partners implemented a variety of green infrastructure projects to treat stormwater at its source while delivering environmental, social and economic benefits to Barnegat Bay. Completed projects include:

  • 2 Years After Planting was Completed: Laurel Commons, Carnation Basin RetrofitConversion of standard, grassed detention basins into naturalized bio-retention basins, as exemplified by the Laurel Commons Carnation Circle Basin, which now serves as a paradigm for the cost-effective retrofitting of aged, traditional detention basins
  • At Toms River High School North, the installation of tree boxes,
  • At the Toms River Board of Education offices, the replacement of conventional paving with permeable pavement,
  • At multiple sites, the construction of rain gardens,
  • At Toms River High School North, the construction/installation of stormwater management Manufactured Treatment Devices (MTDs)
  • At the Toms River Community Medical Center (RWJ Barnabas Health), the construction of a bio-retention/infiltration basin

Education and outreach have also been key factors in improving the condition of the Bay, including training seminars for engineers, planners and code officials on basin conversion and management of green infrastructure; educational materials and signage; and public involvement in volunteer clean-ups, lawn fertilizer usage reduction, and rain garden and basin planting.  

Through its work with key partners, like Princeton Hydro, and countless volunteers, the American Littoral Society has made notable progress in Barnegat Bay, but much more needs to be done to restore and protect this unique ecosystem. Join the cause to help save Barnegat Bay; contact the American Littoral Society to find out how you can make a difference. 

For a detailed review of each project and an in-depth look at the incredible work being done to save Barnegat Bay, go here and download our brochure.

About the American Littoral Society: The American Littoral Society, founded in 1961, promotes the study and conservation of marine life and habitat, protects the coast from harm, and empowers others to do the same.

Truxor DM 5045 – The Newest Addition to the Princeton Hydro Family

Truxor DM5045 Stock Image We’re thrilled to announce the arrival of our new Truxor DM 5045!

This multi-functional, eco-friendly, amphibious machine effectively controls invasive weeds and problematic algae growth without the use of pesticides.

Its light-weight construction and highly advanced weight distribution system provide low ground pressure and high floating capacity. This allows the Truxor to operate on water, in deep or very shallow depths, and on dry land without disrupting sensitive environments, like nature preserves, wetlands, canal banks, golf courses and areas that are difficult to access with conventional equipment. And, the Truxor’s highly maneuverable and precise control system ensures easy passage through narrow channels and around hazards.

Equipped with a wide range of tools and accessories, the Truxor DM 5045 can perform a variety of functions, including weed cutting and harvesting, mat algae and debris removal, silt pumping, dredging, channel excavation, oil spill clean-up and much more!

This is the second Truxor to be welcomed to the Princeton Hydro family, which also includes a Marsh Master, another versatile, fully amphibious vehicle. Watch our Truxor DM 5000 in action.

If you’re interested in learning more about our innovative lake and pond management techniques or wondering if the Truxor is the right tool for one of your projects, please contact us!

 

 

Pesticide-Free Lake Management Solutions

Blue Water Solutions for Green Water Problems

Managing your lakes and ponds without the use of pesticides

 

Proper lake and pond restoration is contingent with having a well prepared management plan. If you don’t start there, you’re just guessing as to which solutions will solve your problem. Successful, sustainable lake and pond management requires identifying and correcting the cause of eutrophication as opposed to simply reacting to the symptoms (algae and weed growth) of eutrophication. As such, Princeton Hydro collects and analyzes data to identify the problem causers and uses these scientific findings to develop a customized management plan for your specific lake or pond. A successful management plan should include a combination of biological, mechanical and source control solutions.  Here are some examples:


Biological Control:

Floating Wetland Islands (FWIs) are a great example of an effective biological control solution. They have the potential to provide multiple ecological benefits. Highly adaptable, FWIs can be sized, configured and planted to fit the needs of nearly any lake, pond or reservoir.

BROOKS LAKE FWI

Often described as self-sustaining, Floating Wetland Islands:

  • Help assimilate and remove excess nutrients that could fuel algae growth
  • Provide habitat for fish and other aquatic organisms
  • Help mitigate wave and wind erosion impacts
  • Provide an aesthetic element
  • Can be part of a holistic lake/pond management strategy

Read an article on Floating Wetland Islands written by our Aquatics Director Fred Lubnow.

Mechanical Control:

Another way to combat algae and invasive weed growth is via mechanical removal. One of the mechanical controls Princeton Hydro employs is the TruxorDM5000, an eco-friendly, multi-purpose amphibious machine that provides an effective, non-pesticide approach to controlling invasive weeds and problematic algae growth.

The TruxorDM5000: TRUXOR

  • Is capable of operating in shallow ponds and lakes where the access and/or operation of conventional harvesting or hydroraking equipment is limited
  • Is highly portable and maneuverable, yet very powerful
  • Can cut and harvest weeds and collect mat algae in near-shore areas with water depths less than three feet
  • Includes various attachments that allow the machine to easily collect and remove a variety of debris
  • Can be outfitted for sediment removal/dredging

Check out the Truxor in action here! 

Source Control:

Because phosphorus is typically the nutrient that fuels algae and weed growth, excessive phosphorus loading leads to problematic algal blooms and can stimulate excessive weed growth. One of the most sustainable means of controlling nuisance weed and algae proliferation is to control phosphorus inputs or reduce the availability of phosphorus for biological uptake and assimilation. The measures that decrease the amount or availability of phosphorus in a lake or pond are defined as “source control” strategies.

Deerfield Lake, PA – PhosLockTM treatment Through data collection and analysis, we can properly identify the primary sources of phosphorus loading to a lake and pond, whether those sources are internal or external.  Our team of lake managers, aquatic ecologists and water resource engineers use those data to develop a management plan that quantifies, prioritizes and correctly addresses problem sources of phosphorus.

PhosLockTM and alum are often utilized as environmentally-safe and controlled means to limit phosphorus availably. Although PhosLockTM works similar to alum, it does not have some of the inherent secondary environmental limitations associated with alum. PhosLockTM is a patented product that has a high affinity to bind to and permanently remove from the water column both soluble reactive and particulate forms of phosphorus. This makes it a very effective pond and lake management tool.

Read more about controlling harmful algae blooms.

These are just a few of the examples of non-pesticide lake and pond management strategies that Princeton Hydro regularly utilizes. Properly managing your lakes and ponds starts with developing the right plan and involves a holistic approach to ensure continued success. For more ideas or for help putting together a customized, comprehensive management plan, please contact us! 

7 Easy Water Conservation Tips

Spring is Here!

What better time to “spring” into water conservation?!

Here are a few simple ways to incorporate water conservation into your spring-cleaning routine:

  • Household leaks can waste more than 1 trillion gallons annually nationwide. Spring is a great time to check for leaks, some of which may have have been caused by winter freeze. Check garden hose spigots, sprinklers, faucets, showers and toilets for leaks, and replace valves, washers and other components as necessary.
  • Install a low-flow showerhead; doing so can save you up to 75 gallons of water per week.
  • While planning your spring/summer flower garden, be sure to incorporate water-wise garden techniques that include drought tolerant plants native to your area. Click here for more info!
  • Create a rain garden! Prepare for spring showers by constructing rain gardens into which runoff from downspouts, walkways, parking areas and even lawn surfaces can be directed. Rain gardens are an inexpensive, attractive and sustainable means to minimize runoff. Click here to learn more!
  • Install a rain barrel and use the captured rainfall to irrigate flower beds. This is another fun and inexpensive way to reduce runoff and save water.
  • To decrease irrigation demands, reduce the size of your lawn (see above tips) and switch to drought tolerant grass species. Also, delay regular lawn watering during cooler spring weather, and irrigate deep, but less frequently during the summer to encourage deep root growth. These measures ensure a healthier lawn throughout the summer. During the summer, keep your mower height high and don’t cut off more than one third of the grass blades; this promotes a healthy lawn that is more drought tolerant.
  • When cleaning your driveway, sidewalk and patio areas, remember to use a broom, not a hose. This not only helps conserve water, it also prevents the run-off of pollutants into our storm drains and ultimately our lakes, ponds, streams, rivers and oceans.
“Spring” into water conservation
and make it a part of every season!

Natural VS. Artificial Lakes

In addition to deep versus shallow, waterbodies can also be compared and contrasted as naturally occurring or as the result of an artificial impoundment or reservoir. While there are a wide variety of natural lakes -from the glacial lakes of northern regions, to oxbow lakes adjacent to rivers, to coastal lakes that can be connected to the ocean – most of these natural systems have a number of common characteristics. Some of these include variable nutrient and sediment loading (from low to high, depending on the nature of the watershed) and low to moderate watershed-to-lake area ratios. In addition, natural waterbodies tend to have distinct and sometimes extensive littoral zone fringe habitat along the shoreline. Littoral habitat is the interface between the land and the open waters of a lake. Typically, rooted aquatic macrophytes (plants and mat algae) are found in the littoral zone, along with a number of aquatic organisms that use this habitat for food and/or cover. Thus, the littoral zone of lake is frequently the most productive areas of this ecosystem.

Graphic adapted from www.cues.cfans_umin.edu

Graphic adapted from www.cues.cfans_umin.edu

In contrast, large artificial impoundments, frequently called reservoirs, are waterbodies typically created by placing a dam across a stream or river (see below). This often results in the triangular shape of a reservoir; the deepest portion is located just behind the dam. Unlike many natural lakes that have a number of small inlet or inflow streams, a reservoir typically has one main inflow, which is essentially the river or stream that was originally dammed. Traveling upgradient from the dam towards the main inlet, water depth will decline. Additionally, many reservoirs are a type of hybrid of natural lakes and rivers. The upgradient/inflow part of the reservoir functions more like a riverine system, while the main body of the reservoir near the dam functions more like a lake (see below).

Graphic adapted from Reservoir Limnology: Ecological Perspectives, edited by K.W. Thornton, B.L. Kimmel and F.E. Payne, 1990

Graphic adapted from Reservoir Limnology: Ecological Perspectives, edited by K.W. Thornton, B.L. Kimmel and F.E. Payne, 1990

Since reservoirs are essentially dammed rivers, they tend to have very large watershed-to -lake area ratios, which means they tend to experience substantially higher nutrient and sediment loads compared to natural lakes. Thus, the level of productivity (algae growth) in the open waters of a reservoir is substantially higher than those of a natural lake. This means reservoirs have the tendency to experience larger and more frequent algal blooms. High rates of sediment loads also means rates of sedimentation will be higher in reservoirs compared to natural lakes. Finally, since the water level of reservoirs are highly dependent on inflow from the main riverine source, as well as water withdrawals in the case in drinking water supplies, the establishment of a littoral zone in reservoirs tends to be very limited.

In summary, a reservoir of comparable size to a natural lake will typically have a higher level of algal productivity, higher rates of sedimentation, and a smaller amount of biological diversity (with the general absence of a littoral zone). Thus, water quality problems can be larger and more frequent in reservoirs when compared to many natural lakes. Since many reservoirs are vital sources of potable water for millions of people throughout the United States, the general management activities for a reservoir tends to be higher relative to many natural lakes.

Join us next time, when we will discuss lake and pond productivity, the role the watershed plays in productivity, and how this impacts their recreational, potable and ecological value.

Natural Flow Regime and Ecological Integrity

In July 2013, the United States Geological Survey[1] (USGS) released CircularEcological Health in the Nation’s Streams, 1993—2005 1391 titled, “The Quality of our Nation’s Waters – Ecological Health in the Nation’s Streams, 1993-2005”.  Circular 1391 reported the approach and findings of multiple community assessments conducted in streams throughout the US.  Based on its application of integrated biological assessment (i.e., combined analysis of algae, macroinvertebrate, and fish communities), USGS concluded that at least one among these three biological communities was altered[2] in 83% of the assessed streams; while all three biological communities were altered in 22% of the streams considered.  The biological impairment USGS catalogued range from 79% in agricultural settings to 89% in urban settings.  A biological community was deemed unaltered in just 17% of the assessed streams.

By coincidence, in July 2013 Princeton Hydro, LLC completed, “The Monponsett Pond and Silver Lake Water Use Operations and Improvement Report”.  Princeton Hydro’s report, prepared on behalf of the Town of Halifax in Plymouth County, Massachusetts; was funded by a competitive grant program – the Massachusetts Sustainable Water Management Initiative (SWMI).  The overall principle of SWMI is stated as:SWMI Report cover

The Commonwealth’s water resources are public resources that require sustainable management practices for the well-being and safety of our citizens, protection of the natural environment, and for economic growth.

The central issue for us to consider was an archaic water management circumstance, established through an 1899 State legislative Act and further complicated by two crisis management episodes in the 1960s and 1980s, respectively; that authorized the City of Brockton, MA to source the majority of its municipal water supplies from three water bodies (Silver Lake, Monponsett Pond, and Furnace Pond) located near Halifax, MA.  Brockton is situated 20 miles northwest of its Silver Lake Water Treatment Plant (WTP).  Moreover, Silver Lake, Monponsett Pond, and Furnace Pond each lie in the headwaters of different watersheds.

Princeton Hydro’s Role: Review and Analysis of the Brockton Water Supply System

In December 2012, Princeton Hydro was asked by the Monponsett Watershed Association (MWA) and the Jones River Watershed Association (JRWA) to act as technical lead for a bid by the Town of Halifax seeking SWMI grant funding.  MPWA and JRWA viewed Princeton Hydro as an ideal partner for this project owing to our diverse skills and expertise in water resource management.  Moreover, although we work in a variety of settings throughout Massachusetts, as a geographic outsider, Princeton Hydro brought fresh perspective to a complex and controversial problem that has plagued southeastern Massachusetts for decades.  In late March 2013, our team was notified that our application would receive funding – our contract required that we complete all of our activities by June 2013 and issue our final report by mid-July.

Princeton Hydro examined an abundance of information regarding the macro-scale characteristics associated with Brockton’s water supply system.  Our review and analyses emphasized hydrologic and nutrient pollutant modeling of the individual water bodies that make up Brockton’s primary water sources.  Our objective was to evaluate the water supply system in the context of the overall natural resource regulatory framework as well as the impacts that current water management practices exert on the ecosystem, including the numerous ecosystem services that humans rely upon.Water Budget Chart

Overall, our evaluation of Brockton’s water sources demonstrated that existing water management practices are not sustainable – we showed that in an average year, Brockton uses the equivalent of every water drop that enters the Silver Lake watershed as precipitation.

Furthermore, Princeton Hydro demonstrated that the artificial movement of water across natural watersheds results in a suite of negative consequences for ecological and human communities that inhabit the setting.  The primary negative impacts of water management practice include deviation from natural stream flow regime in three watersheds: Jones River (Jones River watershed), Stump Brook (Taunton River watershed), and Herring Brook (North River watershed); accelerated cultural eutrophication of Monponsett Pond and Silver Lake; and, heightened concern for the long-term integrity of sensitive environmental settings such as the Stump Brook Wildlife Sanctuary and the Burrage Pond Wildlife Management Area.

Clean Flowing Water Defines Healthy Streams

As reported by USGS in Circular 1391, reduced stream health most frequently relates directly to manmade modifications of the physical and chemical properties of streams.  Maintenance of stream health in the face of land development requires that the physical and chemical properties of streams remain within the bounds of natural variation.  Land and water management practices lie at the heart of reduced aquatic ecological integrity.  The most common factors for reduced stream health include:

  • Stream Flow Fluctuation
  • Nutrient Enrichment
  • Changes in Temperature Regime
  • Changes in Light Availability
  • Contaminants
  • Exotic Taxa

Despite some of the bleak statistics reported by USGS about stream health in the US, Circular 1391 provides insight that can guide land and water managers toward better overall stewardship and even remediation of ecologically-damaged waters.  Moreover, although a distinct majority of streams exhibit altered biology, even in urban settings, USGS showed that more than 10% of assessed streams were not biologically altered and that statistic points to a silver lining; meaning that unaltered aquatic communities can be compatible with urban settings.

Possible Management Options for Brockton

The Brockton water system amounts to an unsustainable use of sources for water consumed well beyond the source setting.  The strain on waters in the source areas leads to cascading impacts on water quality, ecosystem functions, and property value – impacts that are consistent with diminished ecological integrity reported by USGS in Circular 1391.

As USGS demonstrated, there is widespread evidence that stream flow and nutrient status are the most critical variables for stream health, and by extension – aquatic health in general.  USGS also suggested that management strategies aimed at restoring aquatic health are best developed and applied at the local/ watershed scale, where there is an understanding of how land- and water-management activities modify the physical, chemical, and biological attributes of streams.

Princeton Hydro recommended that the most obvious alternative to existing water management practice is to apportion the Brockton water supply to more and/or different sources in order to alleviate strain on Silver Lake, Monponsett Pond, Furnace Pond and their respective individual watersheds – Brockton’s consolidation of three headwaters watersheds in order to export water to a distant region contradicts the basic tenets of modern watershed science.

Since 2008, a desalination plant (Aquaria located in Dighton, MA) has offered a seemingly sensible alternative source for Brockton to eventually offset as much as 50% of the approximately 9 million gallons of water currently sourced from Silver Lake daily, yet the City (despite a 20-year contract that requires multi-million dollar payments to Aquaria annually) declines to accept Aquaria’s desalinated water as an offset to its Silver Lake source.

Among conceptual alternatives for supply, we also suggested directly feeding stock water from Monponsett Pond (and/or Furnace Pond) into the Silver Lake WTP in lieu of diverting and diluting millions of gallons of nutrient-enriched water per year into the comparatively clean waters of Silver Lake.

Princeton Hydro also suggested that horizontal alignment of extraction wells placed into the highly transmissive Plymouth – Carver – Kingston – Duxbury (PCKD) aquifer system would represent a less ecologically-damaging water source that also could provide feedstock to the Silver Lake WTP.

Princeton Hydro readily acknowledges that development/utilization of any water source alternatives to the current Silver Lake system will require new capital investment or other additional costs by Brockton, but the long-term cost of unsustainable water supply management by Brockton is a costly endeavor right now.  And in the case of Brockton’s water supply system, Brockton and its customers are not bearing all of the current costs of its water management practice.

Even in a water-rich region like southeastern Massachusetts, deep conflicts over water management practices can and sometimes do erupt.  The magnitude of long-term water withdrawal that exceeds sustainability depends on the hydrologic effects that society is willing to tolerate, including the actual cost of infrastructure, labor, energy, and related items necessary to obtain, treat, distribute, and otherwise manage land and water resources responsibly.

Decision-makers today and in the future face increasing strains on natural as well as economic resources and particularly for water resource stewardship, sustainable management is becoming less an idealized notion and more an imperative.


[1] Carlisle, D.M., Meador, M.R., Short, T.M., Tate, C.M., Gurtz, M.E., Bryant, W.L., Falcone, J.A., and Woodside, M.D., 2013, The quality of our Nation’s waters—Ecological health in the Nation’s streams, 1993–2005: U.S. Geological Survey Circular 1391, 120 p., http://pubs.usgs.gov/circ/1391/.

[2] USGS defined altered as the numbers and types of organisms were substantially different when compared to a regional reference stream.

Really, it’s the least we could do.

Originally posted August 27, 2010 at phfieldnotes.blogspot.com.

There has been a growing number of people realizing that sustainable stormwater design can fill another very important function: habitat creation. In many regions where open space it at a premium and the creation of green space in urban areas has become paramount, using stormwater management facilities – large and small – to provide precious habitat opportunities is making more and more sense. In fact, some would argue (us included) that it’s a no-brainer.

Beyond planting with natives, maintaining naturalized stormwater facilities reduces reliance on fossil fuels, improves air quality, maximizes pollution reduction, and can provide increased infiltration. Sadly, the push back to naturalization can be fierce. Concerns that anything but closely cropped lawn will harbor threats to human health and well-being are far-ranging – we’ve heard it all: rats, snakes, pollen (gasp!), and perverts. Yes; perverts.

Sadly, the sterilization of our environment has led to the widespread collapse of ecosystems and left us engaged in an endless war with invasive species. Humanity’s lack of understanding that we rely on a healthy environment for our own health and well-being is quickly sending us down a slippery slope; once we lower our species diversity and richness, it won’t recover in this millennium.

The least we could do is offer up our stormwater spaces to buck the trend.

Lauren Kovacs, LEED AP
Environmental Designer