Dam Removal Underway in Watertown, Connecticut

Photo courtesy of the Town of Watertown

As dams age and decay, they can become public safety hazards, presenting a failure risk and flooding danger. According to American Rivers, “more than 90,000 dams in the country are no longer serving the purpose that they were built to provide decades or centuries ago.” Dam removal has increasingly become the best option for property owners who can no longer afford the rising cost of maintenance and repair work required to maintain these complex structures.

Dams can also cause environmental issues such as blocking the movement of fish and other aquatic species, inundating river habitat, impairing water quality, and altering the flow necessary to sustain river life. Removing nonfunctional, outdated dams can bring a river back to its natural state and significantly increase biodiversity for the surrounding watershed.

Currently, work is underway in Watertown, Connecticut to remove the Heminway Pond Dam, which restricts fish passage in Steele Brook, creates a pond with increased water temperatures and high bacterial levels due to high geese populations, and encourages deposition of iron precipitate in the stream channel just downstream of the dam.

Princeton Hydro designed the engineering plans, managed permitting and is now overseeing construction for the removal project. The removal of the Heminway Pond Dam is identified as an integral component in addressing water quality impairment between the dam and Echo Lake Road.

CT DEEP recently published this piece encapsulating the Heminway Pond Dam removal project:

REMOVAL OF HEMINWAY POND DAM ON STEELE BROOK IN WATERTOWN UNDERWAY

Upstream at rock-filled breach in Heminway Pond Dam and shallow, dewatered impoundment on Steele Brook in Watertown (7-18-18)

After almost 15 years of discussion and planning with the Town of Watertown and other partners, removal of Heminway Pond Dam on Steele Brook in Watertown finally got underway in early July.  Though no longer functional, the dam and pond were originally constructed to supply water for a former thread/string mill.  The Town acquired the dam and pond from the Siemon Company, the most recent owner, in 2007 with an eye towards removing the dam, restoring the river and converting the dewatered impoundment area into a passive recreation area, including an extension of the Steele Brook Greenway.  With these goals in mind, the Town approached CT DEEP for help with removal of the dam.

As it turns out, CT DEEP, has also had a strong interest in seeing this dam removed.  It is anticipated that dam removal will improve the hydrology in this section of Steele Brook and eliminate a water quality impairment which manifests itself during hot weather and low flow conditions, as an orange-colored plume of water (due to iron precipitate) immediately downstream of the dam that impacts aquatic life.  Dam removal would also benefit fisheries by restoring stream connectivity and habitat.

Working towards these mutual goals, CT DEEP was able to provide federal CWA 319 nonpoint source grant funding to USDA NRCS to develop a watershed-based plan for Steele Brook to address nonpoint source impairments that includes a dam removal feasibility analysis for Heminway Pond Dam.  Based on the recommendations in this plan, CT DEEP subsequently provided additional 319 grant funds to the Town of Watertown to hire a consultant to develop a dam removal design package, and assist with permitting and preparation.

With the Town of Watertown as a strong and vested partner, CT DEEP is now helping this project over the finish line by providing a combination of 319 and SEP funds to accomplish the actual dam removal and restoration of Steele Brook.  Dayton Construction Company is performing the construction and Princeton Hydro is the consultant overseeing the project on behalf of the Town.  The Northwest Conservation District is also assisting with the project.  It is anticipated that the majority of the work will be completed by this Fall.  U.S. EPA, ACOE and CT DEEP have all played active roles with regard to permitting the project.

 

 

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of dozens of small and large dams in the Northeast. Click here to read about a recent dam removal project the firm completed on the Moosup River. And, to learn more about our dam and barrier engineering services, visit: bit.ly/DamBarrier.

Creative, Timely Solutions Lead to Successful Dam Repair in Medford Lakes

By Kevin Yezdimer, P.E. and Jim Hunt, P.E.

Just 25 miles east of Philadelphia, on the edge of the New Jersey Pinelands region, sits a network of 22 lakes that serve a multitude of recreation purposes for the residents of Medford Lakes. Serving as the guardian to these natural beauties is the Medford Lakes Colony (MLC), a private homeowner association. Homeowners in this community contribute to a “Lake Restoration Fund,” managed by MLC, which is used to maintain the water control structures and monitor the water quality for the bodies of water within the community. This dedicated fund is often used for dredging of the lake beds; repairs and replacement of dams, spillways, and culverts; installation of aerators or fountains to promote long-term benefits to water quality; treatments for weeds and algae; and the maintenance of the coves and beaches.

In mid-April, a concerning blockage developed in Lake Wauwauskashe Dam’s spillway and water was backing up at the upstream outlet structure. The 30-inch wide corrugated metal pipe serves as the dam’s primary (and only) outlet under Wagush Trail, a neighborhood road connecting Lake Wauwauskashe and Lake Mushkodasa. During the attempt to clear the mass of accumulated woody-debris via vacuum truck extraction, a previous repair consisting of a 5’ segment of corrugated plastic pipe had been dislodged and expelled from the downstream end of the spillway. With a compromised dam and flooding in the forecast, MLC acted immediately to handle this emergency dam repair.

Primary Spillway Inlet
Before – Upper portion of the existing corrugated metal pipe was collapsed. After – Pipe was slip-lined and the annulary space was grouted.

 

Given Princeton Hydro’s long-term history of inspecting and maintaining dams and levees in Medford Lakes, MLC contracted our experts to assist. The next day, our team of geotechnical engineers were on-site to investigate the situation. To facilitate the inspection and minimize the stress/pressure on the dam, the upstream and downstream lakes were lowered via an NJDEP Fish and Wildlife Lake Lowering Permit. Additionally, a video inspection of the compromised culvert pipe was conducted. Our geotechnical team observed that the upstream portion of the pipe had collapsed and the structure was experiencing significant seepage (i.e. water flowing through undesirable paths through the dam with the potential for soil piping and stability failure).

Primary Spillway outlet
Before – The existing corrugated metal pipe had corroded and erosion had taken place around the outlet. After – Pipe has been slip-lined and outlet protection (riprap) was installed to stabilize the surrounding soil.

 

With the risk of potential dam failure, Princeton Hydro immediately kicked-off coordination with the NJDEP Bureau of Dam Safety, NJDEP Division of Land Use Regulation, the Pinelands Commission, and the Borough of Medford Lakes. Our licensed engineers promptly developed the repair concept and associated scope of work, detailing our proposed means and methods for the emergency repair.

“We take the potential risk of dam failure very seriously, as safety is one of our core values,” said Kevin Yezdimer, P.E. Director of Geosciences Engineering at Princeton Hydro. “Our geotechnical team prioritized the design, permitting, and implementation of this emergency repair to assure the safety of our client and the community.”

Injection grouting underway (Grout pressure is monitored during placement & the ground surface is monitored for signs of heave).

This included addressing the collapsed pipe; utilizing cementitious injection grouting and compaction grouting to eliminate seepage pathways and stabilize the earthen dam in-place; and provide spillway outfall protection. Through private solicitation, Princeton Hydro selected Compaction Grouting Services, Inc. as the specialty contractor to perform the repair.

A considerable volume of water was required to prepare the grout mixes, and no water sources were available adjacent to the project site. Seeking out solutions, MLC proposed the unique idea of using reclaimed wastewater from the local wastewater treatment plant. Our team confirmed that reuse of the reclaimed wastewater was indeed within the guidelines of the “Technical  Manual for Reclaimed Water for Beneficial Reuse,” and we successfully facilitated approval to use it with NJDEP Division of Water Quality.

Placement of cellular fill into the hollow concrete structure is underway. A lightweight foaming agent was added to the grout mix within the concrete truck. The lightweight grout was then pumped into the structure.

As the construction effort ramped-up, some complications arose. By design, this unique structure allows water flow over the dam’s weirs and drops 8 to 10 feet vertically before travelling under the roadway through the primary spillway. Above the primary spillway is a concrete structure that spans from the upstream lake to the downstream lake and immediately beneath the local roadway. It was discovered that this 50’ long, 6’ deep, concrete structure was hollow and served as a potential seepage pathway. Princeton Hydro proposed to fill-in the hollow structure with a lightweight cellular fill material in order to cut-off the potential seepage pathways, eliminate the 6’ deep hollow chamber beneath the roadway, and facilitate a long-term repair solution.

Implementation of this strategy was further complicated when a utility markout and a subsequent video inspection of the hollow structure confirmed that a gas line passed through the structure on the downstream side of the roadway. Princeton Hydro coordinated with South Jersey Gas to disconnect the gas line in order to minimize risk during construction and eliminate future complications. The neighborhoods on either side of the dam were fed redundantly, so their service was not interrupted during this process.

Overall, the emergency dam repair solution involved an in-situ soil stabilization of an earthen embankment dam via compaction/injection grouting, slip-lining the primary spillway, stabilization of the downstream outlet, and utilization of reclaimed wastewater as a water source for on-site grout batching. The following was completed by our team and contractors during the course of the emergency construction:

  • Slip-lining of the failed 30-inch pipe using a smooth, slightly smaller in diameter high density polyethylene pipe (HDPE) pipe inside of the existing pipe, providing an equal or greater hydraulic capacity as that existing;

  • Grouting of the annular space between the new and old pipes;

  • Non-woven geotextile fabric and riprap outfall protection were placed around the downstream outlet of the culvert pipe to provide scour protection;

  • Compaction and injection grouting was performed in multiple locations. The compaction grout utilized a “low-slump” mix while the injection grout utilized a much more mobile or fluid mix allowing for filling of existing seepage pathways or soil voids, and;

  • Approximately 44 cubic yards of lightweight cellular-grout backfill was utilized to fill in the hollow concrete structure beneath the roadway completing the emergency repair without the need for complete outlet structure or earthen dam reconstruction.

Lowering New Pipe Into Place

Creative, innovative solutions paired with timely coordination and expertise drove the success of the Lake Wauwauskashe Dam emergency repair.

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast. To learn more about our dam and barrier engineering services, visit: bit.ly/DamBarrier.

Kevin M. Yezdimer, P.E., Princeton Hydro’s Geoscience Engineering Director, is a multidisciplinary professional civil engineer who holds degrees in both Geology and Civil Engineering, and has 11 years of progressive and varied work experience as both a design consultant and project owner with Geotechnical & Construction Engineering being his core area of expertise. He has significant experience performing soil and rock core sampling programs, infiltration testing, soils laboratory testing, foundation design (shallow and deep), preparation of construction recommendations,  and overseeing construction review activities (e.g., earthwork, foundations, concrete, masonry, structural steel, roadway, and utility construction).

 

Jim Hunt, P.E., joined Princeton Hydro in 2017 as a Geotechnical Engineer and provides a wide range of engineering services for the firm including: subsurface explorations, bearing capacity and settlement analyses, slope stability analysis, stability analysis of existing structures, preparation of technical deliverables, and cost estimating.

 

 

 

Lithuania Hosts First-ever Dam Removal Workshop Feat. Princeton Hydro Expert

Lithuania Hosts its First-Ever
Dam Removal Workshop

Princeton Hydro’s Laura Wildman Invited to Present

History was recently made in Lithuania with the occurrence of the first-ever dam removal workshop held in the country. Experts throughout the world convened at the Ministry of Environment in Vilnius, the capital of Lithuania, to lead discussions on a variety of topics related to dam removal and river rehabilitation.  They covered the current state of affairs regarding Lithuanian dams and showcased the Dam Removal Europe (DRE) initiative, a new effort aimed at restoring rivers in Europe.

The workshop was the brainchild of Lithuanian environmental activist Karolina Gurjazkaitė. She read about the DRE campaign and was so inspired by the initiative, she contacted DRE representatives about organizing the workshop. Her goals in organizing the first-ever dam removal workshop in Lithuania were to build awareness around the importance of river restoration, call attention to the many outdated, unmaintained, and unnecessary dams throughout Lithuania, and ultimately inspire positive changes in the way of dam removals and river rehabilitation.

“I am very excited, not only about the workshop, but also about the ‘side effects’…already created,” said Karolina. “People are gaining hopes and enthusiasm… This workshop may have really powerful outcomes!”

Karolina gathered a diverse group of workshop attendees, comprised of government officials (including the Vice-Minister of Environment of Lithuania), university professors (primarily specializing in dam safety and hydropower development), local environmental advocates and NGO volunteers, researchers, and students.

Presenters during the workshop included scientists, engineers, communication experts, planners, activists, and Princeton Hydro’s New England Regional Office Director and Fisheries Engineer Laura Wildman, P.E.

Presentations covered a wide variety of topics, including:

  • Policy and current situation in Europe: Pao Fernández Garrido of World Fish Migration Foundation, Spain presented on DRE findings related to policy and the current dam removal situation in Europe.

  • Research: Rachel Bowes from Karlstad University, Sweden spoke about current state of affairs with Swedish dam removal efforts and the research they are currently carrying out.

  • Book presentation: Herman Wanningen of World Fish Migration Foundation, Netherlands presented the new book, From Sea to Source 2.0, which is focused on tackling the challenges of restoring fish migration in rivers around the world and is available for free download.

  • Technical issues: Laura Wildman, PE, who has over 20 years of experience on dam removal, presented on the most important technical aspects when carrying out a barrier demolition.

On day two of the workshop, participants were invited to take part in field visits to five dam sites. Each of the five dams all presented their own unique challenges in terms of the ability to remove them. The site visits provided a deeper look into the challenges that will need to be addressed when forging ahead with a Lithuanian river restoration initiative.

The workshop proved to be instrumental in identifying key challenges and next steps in building a successful country-wide river rehabilitation initiative. One of the key takeaways from the workshop is the need for a more robust understanding of Lithuanian-specific rules and regulations that classify a dam removal project as either viable or not viable.

“Not only has there never been a dam removal workshop held in Lithuania, to date, a dam removal has never been completed in Lithuania, at least none that have been documented and none for environmental restoration reasons,” said Laura. “It’s clear that we still have a lot to explore and discover, but I am so thrilled to have been a part of this workshop. It was a very positive first step in the right direction, and I’m looking forward to watching and helping this initiative flourish.”

To learn more about Princeton Hydro’s dam removal and river restoration initiatives, go here.

 

Employee Spotlight: Meet Our New Team Members

Princeton Hydro is growing!

We’re excited to welcome seven new members to our team. The addition of this group of talented individuals strengthens our commitment to delivering great service that exceeds our clients’ expectations.

Meet Our New Team Members
John Eichholz, Financial Strategist & Controller

John has a wealth of experience in financial analysis, strategic planning, business operations, and marketing strategy. As Controller and Financial Strategist for Princeton Hydro, he will oversee all finances and will work directly alongside our executive team to develop business strategies.

John has worked with an array of globally recognized companies, including Dun & Bradstreet, American Express, MasterCard, and Barclays. He specializes in financial forecasting, creating financial models and competitive intelligence reporting to enhance business understanding, developing strategic framework for how to manage initiatives across multiple constituents, and enhancing marketing performance through analysis. John has a BA in Political Science and an MBA in Marketing and Operations Management, both from Columbia University.

John lives in New Hope, PA, with his two children. When not attending swim meets and archery tournaments, John can be found cycling and attending music events throughout the Philadelphia area. Learn more.

Casey Clapsaddle, Hydrologist/Fluvial Geomorphologist

Casey recently joined our team as a full-time Hydrologist/Fluvial Geomorphologist after several years of outside consulting for Princeton Hydro through his company Rivers Unlimited. He has over twenty years of experience in hydrology, hydraulic studies, geomorphology, river restoration design, river stabilization design, habitat improvement and watershed management/restoration. Throughout  his career, he has continually developed bank stabilization, habitat improvement, and river restoration design techniques and construction approaches using natural materials, which provide projects with a more natural looking aesthetic. He strives to make all completed projects enjoyable places for relaxation, recreation and connection with the natural environment. Learn more.

Paul Cooper, Senior Ecologist

We’re excited to welcome Paul back to the Princeton Hydro team! He started in 2003 and took a brief hiatus to care for his daughter. With a focus on aquatic ecology, Paul will utilize his extensive experience to design and implement watershed-scale studies, develop management and restoration plans, and implement various water resource management strategies. Paul specializes in lake ecology with interests in fisheries, macroinvertebrates, aquatic macrophytes, plankton, and watershed and hydrology modeling. When he’s not working, Paul enjoys bird watching and fishing. Learn more.

Jake Dittes, EIT, Water Resources Engineer

Jake is a passionate engineer whose personal interests align well with his professional interests to restore habitat and natural functions of aquatic systems. As a Water Resources Engineer for Princeton Hydro, Jake assists in hydrologic and hydraulic modeling, project design, drafting and construction management on ecological restoration projects. Before joining the team, Jake worked in the energy sector to support energy efficiency by evaluating the efficiency portfolios of utility companies. Jake graduated as an Engineer from Harvey Mudd College, where he was highly involved in campus sustainability projects. Outside the office, Jake loves to be outdoors doing all types of fun activities. Learn more.

Angela Pelle, Water Resources Engineer

As a Water Resources Engineer, Angela has joined the team to work on a variety of restoration projects. Before coming to Princeton Hydro, she received her M.S. in Environmental Engineering at the University of Alabama, where she performed graduate research with the USDA. She studied land surface management on water budgets in agricultural regions of Tennessee, and quantitative impact of weather modification on streamflow in the North Platte River in Wyoming. Outside of the office, Angela enjoys Crossfit, playing tennis, and hiking with her dog, Albus. Learn more.

Casey Schrading, Staff Engineer

Casey joins the team as a staff engineer with a focus in water resources engineering. A graduate from Virginia Tech in 2018 with a degree in Biological Systems Engineering, Casey has experience in ecological restoration, flood management, water quality analysis, and best management practices. His experience also includes construction oversight for dam removal and restoration projects, and design, technical writing, and drafting for a variety of water resources engineering projects. In his free time, Casey enjoys hiking, skiing, and camping. Learn more.

Mike Tucci, Senior Project Manager, Engineering

Mike works as a Senior Project Manager and uses his strong background in water resource engineering and project management to contribute to the Engineering Practice area. He enjoys working in multi-discipline team environments and facilitating common sense thinking to solve complex problems. Prior to joining Princeton Hydro, Mike worked in a similar role as a consulting engineer and project manager supporting complex environmental and engineering projects in various business sectors. Mike lives in Bucks County, PA with his family. Away from the office when not exploring the outdoors on foot, bike or watercraft, he enjoys spending time in the kitchen. Learn more.

 

Conservation Spotlight: Dunes at Shoal Harbor Shoreline Protection

Hurricane Sandy was the largest storm to ever originate in the Atlantic ocean. It badly damaged several countries in the Caribbean, caused over $50 billion in damages along the Eastern Seaboard, and left dozens dead. While hurricanes are a natural part of our climate system, research shows that intense hurricane activity has been on the rise in the North Atlantic since the 1970s. This trend is likely to be exacerbated by sea level rise and growing populations along coastlines. Natural coastal habitats — like wetlands and dunes — have proven to shield people from storms and sea-level rise, and have protected coastal communities from hundreds of millions of dollars in damage.

The Dunes at Shoal Harbor, a residential community in Monmouth County, New Jersey, is situated adjacent to both the Raritan Bay and the New York City Ferry channel. The site, previously utilized for industrial purposes, consisted of a partially demolished docking/berthing facility. A significantly undersized 6” diameter, 8-foot long stone revetment was also constructed on the property.

During Hurricane Sandy, the revetment failed and the community was subjected to direct wave attack and flooding. Homes were damaged, beach access was impaired, and the existing site-wide stormwater management basin and outfall was completely destroyed.

Princeton Hydro performed a wave attack analysis commensurate with a category three hurricane event, and used that data to complete a site design for shoreline protection. Consistent with the analysis, the site design includes the installation of a 15-foot rock revetment (one foot above the 100-year floodplain elevation) constructed with four-foot diameter boulders. The project also consists of replacing a failed elevated timber walkway with a concrete slab-on-grade walkway, restoring portions of the existing bulkhead, clearing invasive plants, and the complete restoration of the failed stormwater basin and outlet.

A rendering of the “Dunes at Shoal Harbor” shoreline protection design by Princeton Hydro.

The plan incorporates natural barriers to reduce the impacts of storm surges and protect the coastal community, including planting stabilizing coastal vegetation to prevent erosion and installing fencing along the dune to facilitate natural dune growth.

These measures will discourage future erosion of the shoreline, protect the residential community from future wave attacks and flooding, and create a stable habitat for native and migratory species.  The project is currently in the permitting phase, and will move to construction when all permits are obtained from local, state, and federal agencies.

This project is an great example of Princeton Hydro’s ability to coordinate multi-disciplinary projects in-house. Our Water Resources Engineering, Geosciences Engineering, and Natural Resources teams have collaborated efficiently to analyze, design, and permit this shoreline protection project. For more information on our engineering services, go here.

Dam Removal on the Moosup River

Moosup River

The Moosup River is a beautiful 30-mile-long, trout river flowing through Connecticut and Rhode Island, eventually emptying into the Quinebaug River.

Several dams, most originally built in the 1800s or early 1900s, impeded the river’s natural flow, impaired habitat, fragmented the river system, and prevented fish from swimming upstream to their native spawning grounds.

In 2013, American Rivers, CTDEEP Fisheries, and Natural Resources Conservation Service began collaborating on the removal of multiple dams and remnant dams as part of a larger project to restore connectivity to the Moosup River in the Town of Plainfield. Princeton Hydro and RiverLogic Solutions were contracted to provide design-build and permitting services.

As part of this larger multi-year effort, five dams are planned for removal from the Moosup River. The most downstream barrier, the Hale Factory Dam was removed in 2014. The remnants of the toppled Griswold Rubber Dam were removed in 2015. In 2017, the removal of Brunswick Mill Dam #1 was completed. And, two more dams, downstream of New Brunswick Mill Dam #1, are currently under consideration for removal. When fully completed, the Moosup River Dam Removal Project will reconnect fish habitats along 6.9 miles of the Moosup River.

 

Hale Factory Dam

The Hale Factory Dam was constructed of a boulder core capped in a one-foot-thick concrete layer. The dam was partially breached as the concrete cap had deteriorated severely over the years, allowing flow to pass between boulders and allowing the normal pool elevation to drop substantially from its former design height.

The resource delineation conducted on site identified a vernal pool with an 18 inch culvert outlet that discharged 90 feet upstream of the dam. To preserve this ecological resource on the site, the vernal pool was not disturbed during the dam removal.

Princeton Hydro provided a field assessment, sediment characterization and analysis, final design and permit application package for the full removal of the Hale Factory Dam. Full removal of the dam entailed demolition and removal of the concrete, and re-use of the natural cobbles and boulders from the dam to create in-stream habitat features. Once completed, the river and its boulders appeared as if placed by nature itself, with the former dam’s presence indicated only by the age-old lichen covered field stone walls leading up to the banks.

 

Griswold Rubber Dam

The Griswold Rubber Dam was in a gravel-cobble reach of the river approximately 80 feet wide in the Village of Moosup and was adjacent to the 1992 expansion of the Griswold Rubber factory.  At one time, the dam stood approximately 10 feet high and 150 feet long. The dam was constructed of a large segmented concrete slab that had since toppled over and was lying nearly flat on the river bed in multiple sections. The dam structure, having failed, served no useful purpose. Despite being toppled, the dam still presented a deterrent to the effective movement of aquatic organisms at normal to low flows and was therefore worthy of complete removal to restore river connectivity.

Princeton Hydro conducted an initial field investigation with RiverLogic Solutions to gain insights regarding the construction approach. Princeton Hydro then followed-up with a more detailed assessment of river bed sediment, geomorphic conditions, the likely riverine response, construction access, and other design related issues that were incorporated into design plans and permit applications. The restoration design Princeton Hydro developed aimed to remove the partial barrier to fish passage with as little disturbance to surrounding infrastructure and resources as possible.

 

Brunswick Mill Dam #1

This dilapidated timber crib dam stood approximately 4-feet high and spanned the channel at approximately 130 feet. The timbers ranged from 1.5 to 2.5 feet in diameter and over 20 feet in length; 50 were integrated into the dam. The timber crib was filled with gravel and other debris, and the gravel substrate extended 50 feet upstream. The original dam was significantly higher, but the timber crib spillway deteriorated and gradually collapsed over time and only a portion of the structure remained.

For this project, Princeton Hydro completed sediment investigation, sampling and analysis; hydrologic and hydraulic analysis; and provided design and engineering for full removal of the dam. Princeton Hydro contracted with an archeologist / industrial historian, and together closely observed the dam deconstruction to observe and record how the timber crib had been assembled. Multiple types of iron pins and wooden pegs revealed how the dam had been repaired over the years – findings, old maps, and photos were incorporated into a historical report filed with the state historic preservation office. Princeton Hydro coordinated to have the old timbers salvaged for eventual re-use. Removing the Brunswick Mill Dam #1 was a continuation of the large scale Moosup River restoration effort and paved the way for the potential removal of two more dams downstream in the coming years.

“When a dam is breached and taken out, the tangible results are very quickly noticeable,” said Paul Woodworth, Princeton Hydro Fluvial Geomorphologist. “The return of migratory fish is a very strong indicator of the ecological benefits of dam removal – sometimes after a removal you can see fish immediately swimming upstream. Removing dams also improves safety in nearby communities, reestablishes the natural flow of sediment, improves water quality, provides new recreation opportunities, and restores habitats for fish and wildlife.”

Click here to read more about Princeton Hydro’s engineering services for the restoration and removal of dams.

EMPLOYEE SPOTLIGHT: Meet the Interns

This summer, Princeton Hydro is hosting five interns, each of whom are passionate about protecting water quality and preserving our natural resources. From June to August, our interns will gain professional work experience in a variety of subject areas, ranging from stormwater management to dam restoration to ecological design to lake management and much more. They are assisting on a variety of projects, getting real-world practice in their areas of study, and working with a Princeton Hydro mentor who is helping them gain a deeper understanding of the business of environmental and engineering consulting and setting them up for career success.

 

Meet Our Interns:

 

Ivy Babson, Environmental Science Intern

Ivy is a rising senior from University of Vermont, majoring in Environmental Science with a concentration in Ecological Design, and minor in Geospatial Technologies. In the future, she hopes to implement ecological design in urban areas and create a sustainable environment that would allow future generations to care for and interact with a healthy earth.

Ivy will work alongside Senior Aquatics Scientist Dr. Jack Szczepanski and the Princeton Hydro Aquatics team on projects related to lake and pond management, including fisheries management, data collection and analysis, and water quality monitoring. Recently, Ivy assisted Aquatic Ecologist Jesse Smith in completing an electrofishing survey in a Northern New Jersey river.

Learn more about Ivy.

 

Marissa Ciocco, Geotechnical Intern

Marissa is entering her fourth year at Rowan University where she is a Civil and Environmental Engineering major with a Bantivoglio Honors Concentration. In the future, Marissa hopes to work towards creating a greener and safer environment.

During her internship, Marissa will be mentored by Jim Hunt P.E., Geotechnical Engineer, who has already engaged Marissa in a few construction oversight projects, including a culvert restoration effort in Medford Lakes, NJ and observing geotechnical borings in Evesham, NJ.

Learn more about Marissa.

 

Will Kelleher, Environmental Science Intern

Will is a rising junior at the University of Vermont, studying Environmental Science with a concentration in Water Resources. His current career interests are focused around wetlands restoration and water chemistry. He recently spent two weeks studying water management and sustainable technology in the Netherlands and in the past has helped with biological and chemical stream monitoring with Raritan Headwaters Association.

Mentored by Senior Aquatics Scientist Dr. Jack Szczepanski, Will’s area of focus will be lake and pond management. He’ll spend most of his time in the field alongside members of the Aquatics Team collecting water quality data and mapping aquatic plants, learning about aquatic habitat creation, and implementing various invasive aquatic weed control efforts.

Learn more about Will.

 

Veronica Moditz, Water Resources Intern

We are thrilled to welcome back Veronica, who interned with us last year, and is in her final year at Stevens Institute of Technology, pursuing a Bachelor Degree in Environmental Engineering and a Master Degree in Sustainability Management. She is currently the secretary for Steven’s Environmental Engineering Professional Society chapter. In the future, she hopes to work on more sustainable approach to engineering problems.

Veronica will work alongside Project Engineer and Construction Specialist Amy McNamara, EIT, and Mary L. Paist-Goldman, P.E., Director of Engineering Services, on a variety of environmental engineering projects. Most recently, she assisted with a construction oversight and stormwater management project in Morris County, NJ.

Learn more about Veronica.

 

Tucker Simmons, Water Resources Engineer

Tucker is a Civil and Environmental Engineering major at Rowan University focusing on Water Resources Engineering. His Junior Clinic experience includes the study of Bio-Cemented sand and the Remote Sensing of Landfill Fires. In the future, Tucker hopes to work on creating a more sustainable environment.

Throughout his internship, Tucker will be mentored by Dr. Clay Emerson, P.E. CFM, Senior Water Resources Engineer, and will work on projects related to stormwater management, hydrologic and hydraulic analysis, and various aspects of environmental restoration. He recently assisted with a sink hole inspection in Tredyffrin Township, PA and mapped the water depths of a lake in Bucks County, PA.

Learn more about Tucker.

 

Stay tuned for updates on what our interns are working on!

 

 

 

Volunteers Pitch In at New Jersey’s Thompson Park

A volunteer effort, lead by the Middlesex County, New Jersey Parks and Recreation Department and the Rutgers Cooperative Extension, recently took place at Thompson Park.

Despite the rainy weather, 78 volunteers and members of the Youth Conservation Corps removed litter from the shoreline of Manalapan Lake, repaired fencing, made improvements to the park’s walking trails, weeded and mulched the park’s rain garden and native plant garden, and installed new plants in the rain garden.

The park’s rain garden was originally designed by Princeton Hydro Senior Water Resource Engineer Dr. Clay Emerson, PE, CFM. Rain gardens are cost effective, attractive and sustainable means to minimize stormwater runoff. They also help to reduce erosion, promote groundwater recharge, minimize flooding and remove pollutants from runoff.

By definition, a rain garden is a shallow depression that is planted with deep-rooted native plants and grasses, and positioned near a runoff source to capture rainwater. Planting native plants also helps to attract pollinators and birds and naturally reduces mosquitos by removing standing water thus reducing mosquito breeding areas.

Rain gardens temporarily store rainwater and runoff, and filter the water of hydrocarbons, oil, heavy metals, phosphorous, fertilizers and other pollutants that would normally find their way to the sewer and even our rivers and waterways.

On the day of the volunteer event, Central New Jersey received 0.44 inches of rain.  “We got to see the rain garden in action, which was really exciting,” said Princeton Hydro Senior Project Manager Kelly Klein, who volunteered at the event.

Volunteers from the following organizations participated:

  • Edison Metro Lions Club
  • Hioki USA Corporation
  • Girl Scout Troop 70306
  • East Brunswick Youth Council
  • Monroe Middle School
  • South Plainfield High School
  • Rutgers University
  • Master Gardeners of Middlesex County
  • Foresters Financial
  • Princeton Hydro

The Middlesex County Parks and Recreation Department’s next public volunteer event is tomorrow (June 2) in Davidson’s Mill Pond Park.

The Princeton Hydro team has designed and constructed countless stormwater management systems, including rain gardens in locations throughout the Eastern U.S. Click here for more information about our stormwater management services.

New Book Aims to Protect and Restore Fish Migrations

Rivers are a critical natural resource and an essential element for the health and survival of billions of people and countless species. Flourishing populations of migratory fish are an important indicator of a healthy, coastally connected river and a robust aquatic ecosystem as a whole. Migratory fish help to maintain a balanced food web, support productive river systems, and provide income for people around the world.

Yet many migratory fish species are severely threatened primarily due to man-made obstacles like dams and weirs, which disrupt the natural flow of rivers and prevent fish migration. When fish can’t reach their habitat, they can’t reproduce and maintain their populations.

Photo Credit: “From Sea to Source 2.0”

A new book, titled From Sea to Source 2.0, explores the challenges that lie behind restoration of fish migration in rivers around the world and provides a practical guide to promoting the protection and restoration of fish migration. The book is a unique collaboration of over 100 international fisheries professionals and supported by river managers, governments, research institutes and NGOs including World Wildlife Fund and The Nature Conservancy. Geared toward practitioners, but also a wonderful resource for the general public, the book is comprised of inspiring stories from nearly every continent on the planet. Click here to download it for free.

“Ultimately our ambition is to contribute in a positive way to making a better world and a positive difference for migratory fish, nature and humans on local and global levels by inspiring new initiatives for and with people all around the world,” as stated on www.fromseatosource.com. “Whether the challenge is simply to increase access to spawning habitats through connectivity improvements for salmon, or to maintain the livelihoods for hundreds of millions of people dependent upon fish and fisheries in the great rivers of Asia, Africa and South America, we hoped our book would help to achieve these goals.”

Princeton Hydro’s Dam Removal Expert Laura Wildman, P.E. and Fluvial Geomorphologist Paul Woodworth are proud contributors to the book, helping to write the dam removal chapter, creating a dam removal flow chart for the book, and providing multiple photos utilized in the book. Princeton Hydro is also listed as a contributing sponsor.

“We’re so proud to be part of this incredible project with so many partners globally,” said Wildman. “We envision that this book will provide a valuable resource and inspiration for those in countries and regions where the importance of restoring riverine connectivity is newly gaining momentum. We hope it will help emphasize the importance of finding balanced and environmentally informed solutions when proposing additional utilization of public trust resources such as rivers.”

Approximately 40% of all fish species in the world reside in freshwater ecosystems, contributing economic and ecological benefits and value. It’s critical that we support efforts that aim to protect migratory fish species, reconnect rivers, sustain fish passage, and preserve free-flowing rivers through removing unnecessary dams, reconnecting floodplains, managing our water use, and managing hydropower for sustainable rivers.

Education and awareness building are key first steps in protecting rivers. From Sea to Source 2.0 seeks to inform, educate and inspire those who want to know more about how to meet the challenges of restoring fish migration in rivers around the world.  The book is regarded as a crucial resource in the ongoing fight to protect and preserve the enormous value of our waterways.

Get your free copy here.

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast. To learn more about our fish passage and dam removal engineering services, visit: bit.ly/DamBarrier.

Conservation Spotlight: Restoring Fish Passage on the Noroton River

For thousands of years, river herring swam from the Atlantic Ocean through the Long Island Sound and up the Noroton River to spawn each spring. Then, they returned to the ocean until the next spawning season.

Back in the 1920s, President Dwight D. Eisenhower’s administration began connecting the country through a massive interstate highway system. As part of the infrastructure plan, hundreds of thousands of culverts were built across the U.S. with the intention of moving water quickly and efficiently. While that goal was met, many migratory fish and other aquatic organisms could not overcome the culverts’ high-velocity flows, shallow water depths, and perched outlets. This infrastructure prevented them from reaching their native migratory destinations.

By the late 1950s, Interstate 95 cut through Connecticut’s coastal rivers, and culverts were installed to convey river flows. Alewives, American Shad, Blueback Herring, and other native fish species were unable to navigate the culverts. Their populations dwindled to the point where Connecticut, along with Rhode Island, Massachusetts, and North Carolina, instituted moratoriums on catching and keeping the valued forage fish.

Along the Noroton River, three parallel concrete culverts, each 300-feet long, 13-feet wide and 7-feet in height were installed, completely blocking upstream fish passage.  In order to restore important fish populations and revitalize the Noroton River, Save the Sound launched a project that reopened approximately seven miles of the river, allowing migratory fish populations to safely and easily travel through the culverts to reach their original spawning habitat upstream.

The project is a collaboration among Save the Sound, Darien Land Trust, Connecticut Department of Energy and Environmental Protection (CTDEEP), Connecticut Department of Transportation, Princeton Hydro, and other partners. For the project, Princeton Hydro lead design engineering and guided the construction of the following elements to restore upstream fish passage:

  • The installation of a concrete weir at the upstream end of the culvert to increase water depths in one culvert during low-flow periods;
  • The installation of concrete baffles to reduce flow velocities and create resting places for fish, and;
  • The installation of a naturalized, step-pool, rock ramp at the downstream end of the project to allow fish to ascend into the culvert gradually, overcoming the two-foot vertical drop present under existing conditions. The rock ramp consists of a grouted riverstone base with large grouted boulders arranged to make steps, with low-flow passage channels, between a series of pools approximately 1-foot deep that create resting places for upstream migrating fish.

Reopening river passage for migratory species will improve not only the health of the Noroton River itself, but will also benefit the overall ecosystem of Long Island Sound. Over the last decade, fish passage projects around the sound’s Connecticut and New York shores have dramatically increased freshwater spawning habitat for the foundational species whose return is restoring a more vibrant food web to the Long Island Sound.

Construction of the baffles and rock ramp were completed in time for the 2018 migratory season. Construction of the concrete weir is on temporary hold for low-flow conditions. On April 26, 2018, project partners gathered for a project celebration and the release of migratory fish by CTDEEP at an upstream location.

“It’s fascinating to feel the change in the flow patterns against your legs as you walk through the baffled culvert knowing that it will now facilitate fish passage through this restored reach,” said Princeton Hydro’s New England Regional Office Director and Water Resources and Fisheries Engineer Laura Wildman, P.E. “It is a very attractive and natural-looking fishway, and we’re proud to have created a design that fits so well into the surrounding landscape.”

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast.  To learn more about our fish passage and dam removal engineering services, visit: bit.ly/DamBarrier.