Identifying, Understanding and Addressing Harmful Algae Blooms

Harmful Algae Bloom Visible in Owasco Lake. Photo by: Tim Schneider

Harmful Algae Blooms (HABs) were in the spotlight this summer due to the severe impacts they had on lakes throughout the country. The nation-wide HABs outbreak caused beach closures, restricted access to lake usage, and wide-ranging health advisories.

What exactly are HABs? Why were they so severe this summer? Will this trend continue? Can anything be done to prevent the occurrence or mitigate the impacts?

In this blog, we provide answers to all of those questions, exploring what HABs are, why they occur, why they were particularly prevalent this summer, and what we can do to combat them.

What are HABs?

Simply put, HABs are rapid, large overgrowths of cyanobacteria. Cyanobacteria, also known as blue-green algae, aren’t actually algae, they are prokaryotes, single-celled aquatic organisms that are closely related to bacteria and can photosynthesize like algae. These microorganisms are a natural part of aquatic ecosystems, but, under the right conditions (primarily heavy rains, followed by hot, sunny days), these organisms can rapidly increase to form cyanobacteria blooms, also known as HABs.

HABs can cause significant water quality issues in lakes and ponds, often forming a visible and sometimes odorous scum on the surface of the water. They can produce toxins that are incredibly harmful (even deadly) to humans, animals, and aquatic organisms. HABs also negatively impact economic health, especially for communities dependent on the income of jobs and tourism generated through their local lakes and waterways.

What causes HABs?

HABs are caused by a complex set of conditions, and many questions remain about exactly why they occur and how to predict their timing, duration, and toxicity. Primarily, HABs are caused by warmer temperatures and stormwater run-off pollutants, including fertilizers with phosphates.

NY Times article, featuring Princeton Hydro, looks at how climate change affects lakes nationwide, using NJ as an example. Photo by: Rick Loomis, NY Times.HABs are induced by an overabundance of nutrients in the water. The two most common nutrients are fixed nitrogen (nitrates and ammonia) and phosphorus. Discharges from wastewater treatment plants, runoff from agricultural operations, excessive fertilizer use in urban/suburban areas, and stormwater runoff can carry nitrogen and phosphorus into waterways and promote the growth of cyanobacteria.

Climate change is also a factor in HAB outbreaks, which typically occur when there are heavy rains followed by high temperatures and sunshine. Climate change is leading to more frequent, more intense rainstorms that drive run-off pollutants into waterways, coupled with more hot days to warm the water. These are the ideal conditions for HABs, which in recent years have appeared in more places, earlier in the summer.

With climate change and increasing nutrient pollution causing HABs to occur more often and in locations not previously affected, it’s important for us to learn as much as we can about HABs so that we can reduce their harmful effects.

What Can I Do to Prevent HABs?

Signs on the closed beach at Hopatcong State Park warn residents of the Harmful Algae Bloom at Lake Hopatcong on July 2019, in Landing, NJ. (Photo by: Danielle Parhizkaran of NorthJersey.comThe number one thing individuals can do to protect their waterbodies and prevent HABs is to reduce phosphorous use and reduce nutrient loads to waters.

According to Dr. Fred Lubnow, Director of Aquatic Programs for Princeton Hydro, “Managing loads of phosphorous in watersheds is even more important as the East Coast becomes increasingly warmer and wetter thanks to climate change. Climate change will likely need to be dealt with on a national and international scale. But local communities, groups, and individuals can have a real impact in reducing phosphorous levels in local waters.”

Here are a few steps you can take to improve water quality in your community lakes:

Controlling stormwater runoff is another critical factor in improving water quality and reducing HABs. There are a number of low-cost green infrastructure techniques that can be implemented on an individual and community-wide scale. You can read more about green infrastructure stormwater management techniques in our recent blog.

In a recent Op/Ed published on NJ.com, Princeton Hydro President Geoff Goll lists four things that residents, businesses, and local governments should do to prevent another HABs outbreak next summer:

  1. Improve aging “gray” infrastructure
  2. Invest in “green” stormwater infrastructure
  3. Implement regional/watershed-based planning
  4. Pass the Water Quality Protection and Jobs Creation Act

“By making the necessary investments, we can simultaneously create jobs, reduce flood impacts, improve fisheries, maintain or increase lakefront property values, improve water quality and preserve our water-based tourism. The time to act is literally now,” said Geoff. Go here, to read the full article.

HABs Management in Action through Floating Wetland Islands:

Nitrogen and phosphorus are utilized by plants, which means they uptake these nutrients to sustain growth. We see this naturally occurring in wetland ecosystems where wetlands act as a natural water filtration system and can actually thrive from nutrients flowing in from external sources.

This process is replicated in floating wetland islands (FWIs), where you typically have a constructed floating mat with vegetation planted directly into the material. The plants then grow on the island, rooting through the floating mat.

This illustration, created by Staff Scientist Ivy Babson, conveys the functionality of a Floating Wetland Island

This illustration, created by Staff Scientist Ivy Babson, conveys the functionality of a Floating Wetland Island

Not only do FWIs assimilate and remove excess nitrogen and phosphorus out of the water, they also provide habitat for fish and other aquatic organisms; help mitigate wave and wind erosion impacts; provide an aesthetic element; and can be part of a holistic lake/pond management strategy. Because of this, FWIs are being utilized to improve water quality and control HABs in lakes and ponds throughout the country. Princeton Hydro has designed and implemented numerous FWIs in waterbodies large and small. Go here to learn how they’re being used in Harveys Lake.

 

Recognizing and monitoring the changes that are taking place in our local waterways brings the problems of climate change, stormwater pollution and the resulting water quality issues closer to home, which can help raise awareness, inspire environmentally-minded action and promote positive, noticeable change.

If you spot what you believe to be a harmful algae bloom in your community lake, contact your local lake association right away. They, along with their lake management team, can assess the situation and determine what further actions need to be taken.

For more information about harmful algae blooms and water quality management, go here: http://bit.ly/pondlake.

Special thanks to Princeton Hydro Staff Scientist Ivy Babson for her contributions to this blog.

Laura Wildman Awarded for “Bringing the Presumpscot River Back to Life”

Photo provided by the Friends of the Presumpscot River

The Friends of the Presumpscot River (The Friends) Board of Trustees awarded Laura Wildman, P.E., Princeton Hydro’s New England Regional Office Director and Water Resources and Fisheries Engineer, with its “Chief Polin Award.” The award recognizes Laura for her accomplishments and efforts in bringing life back to the Presumpscot River and rivers across the nation. The award was presented at The Friends’ Three Sisters Harvest Dinner & Annual Celebration.

The Chief Polin Award recognizes those who are making significant efforts to restore fish passage, improve water quality and bring back the natural character of the Presumpscot river.During her acceptance speech, Laura thanked The Friends for its continued dedication to restoring fish passage and revitalizing the river. “I am so proud to be part of the ‘river warriors’ team,” Laura said. “Our collective efforts to protect and restore the river have resulted in invaluable benefits to fish, aquatic organisms, wildlife, and the surrounding communities.”

The award is named after local Abanaki tribe leader Chief Polin, who led the first documented dam protest in New England during the mid-1700s, advocating for fish passage, which had been compromised by the first dams built along the river. The award recognizes those who are making significant efforts to restore fish passage, improve water quality, and bring back the natural character of the Presumpscot River. Sean Mahoney from the Conservation Law Foundation also received the Chief Polin Award during the Annual Celebration.

Map provided by The Friends of the Presumpscot RiverLocated in Cumberland County, Maine, the Presumpscot is a 25.8-mile-long river and the largest freshwater input into Casco Bay. The river has long been recognized for its vast quantity of fish. According to The Friends, when Europeans first arrived, they reported that “the entire surface of the river, for a foot deep, was all fish.”

In the 1730s, however, the construction of dams halted the passage of fish up the river. As more dams sprung up in the following centuries, the ecological vitality of the river steadily declined.

For more than 250 years, people have advocated for the unobstructed passage of fish up the Presumpscot River. Over the last 50 years, the river has undergone profound transformation due to the enactment of the Clean Water Act, the removal of a few dams, and the installation of fish passages on existing dams. Fish passage at Cumberland Mills Dam, which was completed in 2013, restored critical habitat to sea run fish such as shad, American eel, and river herring, and allowed them to move upstream again.

Saccarappa Falls dam removal in actionIn July, work began to restore a large reach of the river through Westbrook, Maine. The project involves the removal of two dam spillways from the upper Saccarappa Falls and the construction of a fishway around the lower falls. The project, which was three years in the making, was finally approved to move forward once the City of Westbrook, Sappi Fine Paper, the U.S. Fish and Wildlife Service, the Maine Department of Marine Resources, and the nonprofits, Friends of the Presumpscot River and Conservation Law Foundation, were able to reach a ground breaking settlement. The Saccarappa Falls project is a major step in restoring the river and was a focal point of the Three Sisters Harvest Dinner, celebrating decades of effort on the parts of the Friends of the Presumpscot along with their numerous project partners, including Princeton Hydro.

About the Friends of the Presumpscot River: A nonprofit organization founded in 1992, supported primarily by membership dues and small donations. Its mission is to protect and improve the water quality, indigenous fisheries, recreational opportunities and natural character of the Presumpscot River.
Learn more: presumpscotriver.org

About Princeton Hydro: Princeton Hydro has designed, permitted, and overseen the removal of dozens of small and large dams along the East Coast. To learn more about our fish passage and dam removal engineering services, visit: bit.ly/DamBarrier.

Sediment Testing on the St. Lawrence Seaway

Way up in Northern New York, the St. Lawrence River splits the state’s North Country region and Canada, historically acting as an incredibly important resource for navigation, trade, and  recreation. Along the St. Lawrence River is the St. Lawrence Seaway, a system of locks, canals, and channels in both Canada and the U.S. that allows oceangoing vessels to travel from the Atlantic Ocean all the way to the Great Lakes.

Recently, the St. Lawrence Seaway Development Corporation (SLSDC) contracted Princeton Hydro to conduct analytical and geotechnical sampling on material they plan to dredge out of the Wiley-Dondero Canal. Before dredging, sediment and soils have to be tested to ensure their content is suitable for beneficial reuse of dredged material. In August, our Geologist, Marshall Thomas and Environmental Scientist, Pat Rose, took a trip up north to conduct soil sampling and testing at two different sites within the canal near Massena and the Eisenhower Lock, which were designated by the SLSDC. The first site was at the SLSDC Marine Base, which is a tug/mooring area directly southwest of Snell Lock. The second location was directly northeast of the Eisenhower Lock, which is also used as a mooring area. Both of these sites require dredging in order to maintain mooring access for boat traffic navigating the channel.

During this two-day sampling event, our team, which also included two licensed drillers from Atlantic Testing Laboratories, used a variety of equipment to extract the necessary samples from the riverbed. Some of the sampling equipment included:

  • Vibracoring equipment: this sampling apparatus was assembled on Atlantic Testing’s pontoon boat. To set up the vibracore, a long metal casing tube was mounted on the boat more than 10 feet in the air. The steel casing was lowered through the water approximately 17-20 feet down to the mudline. From there, the vibracore was then vibrated through the sediment for an additional 4-6 feet. For this project, vibracore samples were taken at 4 feet in 10 different locations, and at 6 feet in 3 different locations.

  • A track mounted drill rig: this rig was positioned along the shoreline to allow advancement of a standard geotechnical test boring close to existing sheet piling. Advancement of the boring was done by way of a 6-inch hollow stem auger. As the auger was advanced, it resembled a giant screw getting twisted into the ground. This drilling method allows the drilling crew to collect soil samples using a split spoon sampler, which is a 2-foot long tubular sample collection device that is split down the middle. The samplers were collected by driving the split spoon into the soil using a 140 lb drop hammer.

For our team, conducting sampling work on the St. Lawrence Seaway was a new experience, given most of our projects occur further east in the Mid-Atlantic region. The most notable difference was the hardness of the sediment. Because the St. Lawrence River sediments contain poorly sorted, dense glacial till, augering into it took a little more elbow grease than typical sediments further south do.  The St. Lawrence River is situated within a geological depression that was once occupied by glaciers. As the glaciers retreated, they were eventually replaced by the Champlain Sea, which flooded the area between 13,000 and 9,500 years ago. Later on, the continent underwent a slight uplift, ultimately creating a riverlike watercourse that we now deem the St. Lawrence River. Because it was once occupied by a glacier, this region is full of glacial deposits.

For this project, our team was tasked with collecting both geotechnical and analytical samples for physical and analytical testing. Physical testing included grain size analysis, moisture content, and Atterberg limit testing. Grain size analysis helps determine the distribution of particle sizes of the sample in order to classify the material, moisture content testing determines exactly that — how moist the sediment is, and Atterberg limits help to classify the fines content of the materials as either silt or clay. Analytical testing included heavy metals, pesticides, volatile organic compounds, and dioxins.

Our scientists were responsible for logging, testing, and providing a thorough analysis of fourteen sampling locations. The samples collected from the vibracore tubes filled with sediment were logged and spilt on-shore. In order to maintain a high level of safety due to the possible presence of contaminants, all of the sampling equipment was decontaminated. This process involves washing everything with a soapy water mixture, a methanol solution, and 10% nitric acid solution.

The samples collected at each vibrocore location were split into multiple jars for both analytical and physical testing. The physical test samples were placed into air and moisture tight glass sample jars and brought to our AASHTO accredited soils laboratory in Sicklerville, New Jersey for testing. The analytical samples were placed into airtight glass sample jars with Teflon-lined caps. These samples were then placed into an ice-filled cooler and sent to Alpha Analytical Laboratories for the necessary analytical testing.

Once all the laboratory testing was completed, a summary report was developed and presented to the client. This report was made to inform the SLSDC of the physical properties of each sediment sample tested and whether contaminants exceeded threshold concentrations as outlined in the New York State Department of Environmental Conservation (NYSDEC) Technical & Operation Guidance Series (TOGS) 5.1.9. This data will ultimately be used by the SLSDC to determine the proper method for dredging of the material and how to properly dispose of the material.

Princeton Hydro provides soil, geologic, and construction materials testing to both complement its water resources and ecological restoration projects and as a stand-alone service to clients. Our state-of-the-art Soils Testing Laboratory is AASHTO-accredited to complete a full suite of soil, rock, and construction material testing for all types of projects. For more information, go here: http://bit.ly/2IwqYfG 

Dr. Fred Lubnow of Princeton Hydro Featured in Magazine Article on Chautauqua Lake

The U.S. is home to thousands of lakes both natural and manmade. Lakes are incredibly important features in the landscape that provide numerous beneficial services, including domestic water supply, hydro-electric power, agricultural water supply, recreation, and tourism. They also provide essential habitat for fish, wildlife and aquatic organisms.

Lakes are complex and dynamic systems, each situated in a unique landscape context. Maintaining the ecological health of a lake is no easy feat. A lot goes on behind the scenes to maintain water quality and a balanced lake ecosystem. Successful, long-term lake management requires a proactive approach that addresses the causes of its water quality problems rather than simply reacting to weed and algae growth and other symptoms of eutrophication.

Chautauqua Magazine recently published an article about the science behind the management of Chautauqua Lake, which features our Director of Aquatic Programs Dr. Fred Lubnow. We’ve included an excerpt below. Click here to view the full article and photos:

Dr. Fred Lubnow is a scientist and director of aquatic programs at Princeton Hydro, a consulting organization based in Exton, Pennsylvania, that is often called on to support lake and watershed regions that want to develop a long-term plan for lake conservation.

He says that while his firm focuses on the development of data and intelligence to inform decision making in regard to freshwater ecosystems, his work is really about coalition building.

“As a scientist and a consultant, you learn over time that you are building a coalition stakeholders and determining what we can agree on to help everyone in the community,” Lubnow said.

Ten years ago, Princeton Hydro was hired to do some stream and inlet monitoring for various stakeholders at Chautauqua Lake. More recently, they’ve been contracted to conduct third-party monitoring of the impacts of the Spring 2019 herbicide applications in the south basin of Chautauqua Lake…

Continue reading!

 

Princeton Hydro is the industry leader in lake restoration and watershed management. We have conducted diagnostic studies and have developed management and restoration plans for over 300 lakes and watersheds throughout the country. This has included work for public and private recreational lakes, major water supply reservoir, and watershed management initiatives conducted as part of USEPA and/or state funded programs. For more information about our lake management services, go here: http://bit.ly/pondlake. 

BOROUGH OF RINGWOOD INITIATES FIRST-IN-STATE REGIONAL APPROACH TO LAKE MANAGEMENT THROUGH PUBLIC-PRIVATE PARTNERSHIP

NorthJersey.com File Photo
The Borough of Ringwood initiates a unique public-private partnership
with four community lake associations to
holistically manage watershed health related to private lakes

Providing drinking water to millions of New Jersey residents, the Borough of Ringwood is situated in the heart of the New Jersey Highlands and is home to several public and private lakes that sit within the Ramapo Mountains. In order to take an active role in the management of these natural resources within multiple watersheds, the Borough of Ringwood will be the first municipality in the state of New Jersey to take a regional approach to private lake management through a public-private partnership (PPP) with four lake associations.

The four private sets of lakes targeted in the plan— Cupsaw, Erskine, Skyline, and Riconda —were created by the Ringwood Company in the 1920s and 30s to promote the municipality as a hunting and fishing retreat and a summer resort. They currently provide private beach clubs and recreational opportunities for surrounding homeowners who can opt to join as members.

Map Showing the Four Private Lakes in the PPP holistic watershed management plan

Generally, the health of a private lake is funded and managed in isolation by the governing private lake association group. Ringwood Borough Manager Scott Heck’s concept was to design and implement a municipal-wide holistic watershed management plan to use as a tool to identify capital priorities to enhance water quality throughout the community. Mr. Heck hired Princeton Hydro, a leader in ecological and engineering consulting to design this innovative project.

Cupsaw Lake “This regional approach to lake and watershed management is a no-brainer from a scientific, technical, and community point of view. Historically, however, municipal governments and private lake associations have rarely partnered to take such an approach,” said Princeton Hydro’s Senior Project Manager, Christopher Mikolajczyk, who is a Certified Lake Manager and lead designer for this initiative. “We’re thrilled to work with the Borough of Ringwood and the New Jersey Highlands Council to set a precedent for this logical watershed management strategy, which opens the door for future public-private partnerships.”

As part of this project, a Watershed-based Assessment will be completed. The following objectives will be met:

  1. Identification, quantification, and prioritization of watershed-based factors which may cause eutrophication;
  2. Identification of watershed management measures needed to address general causes of water quality impairments;
  3. Identification of the relative cost of the recommended general watershed management measures;
  4. The generation of a schedule, based on priority, for the implementation of the recommended watershed management measures; and
  5. A general assessment report will be authored at the conclusion of the study.

Skyline Lake in the FallFunding for the Watershed-based Assessment for the Lakes of the Borough of Ringwood is being provided by the New Jersey Highlands Council through a grant reimbursement to the Borough of Ringwood. As part of the PPP , the Borough of Ringwood will review and where feasible implement any suggested actions surrounding the lakes. The final report, provided to the Borough by Princeton Hydro, will identify and prioritize watershed management techniques and measures that are best suited for immediate and long-term implementation, as well as provide cost projections for implementation in both the short-term and long-term.

This integrated approach to watershed and lake management is an important preventative measure to improve water quality for millions of people and reduce potential future incidents of aquatic invasive species and harmful algal blooms throughout the region.

For more information about the PPP, check out today’s NorthJersey.com news story. To learn more about Princeton Hydro’s lake and pond management services, go here: http://bit.ly/pondlake.

A Day in the Life of a Construction Oversight Engineer

Have you ever wondered what it actually means to conduct construction oversight on a project? Our engineers regularly do so to ensure design plans are being implemented correctly. But, construction oversight requires a lot more than just the ability to oversee. Our engineers have to understand the ins and outs of the plans, be adaptable, fast-thinking, and incredibly capable of communicating with and coordinating various parties.

Let’s walk through a day in the life of one of our construction oversight engineers, Casey Schrading, EIT, and outline the key components of his job:

SAFETY. When it comes to construction sites, safety always comes first. It is important to have the proper health and safety training before entering an active construction zone. On an active construction site, there could be many different hazards that workers encounter. Before heading to the site, Casey makes sure he has all his necessary safety equipment and protection gear. Personal Protection Equipment (PPE) usually includes a neon safety vest (visibility), hard hat (head protection), long pants (protective clothing), safety glasses (eye protection), and steel-toed boots (foot protection). In some cases, on construction sites with more risk factors, higher levels of PPE may be required including hearing protection, gloves, respiratory masks, fall protection equipment, and disposable Tyvek coveralls.

COORDINATION.  For most construction projects, the day starts early. Upon arrival, Casey checks the site out to see if anything has changed from the day before and takes pictures of the site. He then checks in with the contractor to discuss the plan for the day and any outstanding items from the day prior.

Most of the day consists of a back and forth process between watching the construction workers implement the design and then monitoring and checking the design plans. In order for the contractor to properly implement the design, the oversight engineer must direct the workers during the installation process; for many designs, there are critical angles, locations, heights, and widths that features must be installed at. It is imperative for the oversight engineer to direct and work hand-in-hand with the contractor so those features are installed correctly for effective design implementation.

ON-SITE MONITORING.  For certain projects, the day-to-day construction oversight tasks may get a little more involved. For instance, when conducting construction oversight for our Columbia Dam Removal project, Casey was tasked with taking turbidity samples every three hours at two locations along the Paulins Kill — one upstream of the site to collect baseline data and one downstream of the site to quantify the site’s effect on turbidity. If the turbidity readings downstream of the site came out too high, Casey would then have to determine how those high levels were affecting the turbidity in the Delaware River, which the Paulins Kill discharges into less than a quarter mile downstream of the site. If flooding in the Delaware River wasn’t enough to pose safety concerns, Casey would then take readings at two additional locations upstream and downstream of the Delaware River-Paulins Kill confluence. Again, the upstream reading served as a baseline reading for turbidity while the downstream reading showed the effects of the Paulins Kill on the Delaware River.

These turbidity samples were necessary because this project involved passive sediment transport, meaning the sediment that had built up behind the dam for over a century was going to slowly work its way downstream as the dam was notched out piece by piece, as opposed to it being dredged out before the barrier removal. It’s important to monitor turbidity in a case like this to make sure levels remain stable. The need for monitoring at construction sites further emphasizes the need for construction oversight engineers to be multifaceted.

ADAPTATION.  In all construction projects, the goal is to have everything installed or constructed according to plan, but, with so many environmental factors at play, that rarely happens. Because of the ever-changing nature of most of our projects, it is essential that our construction oversight engineers have the keen ability to adapt and to do so quickly. Casey has experienced a range of changes in plan while conducting construction oversight. He says the skills he relies on most is communication. When something changes, it’s imperative that the onsite engineer knows exactly who to contact to work out a solution. Sometimes that might be Princeton Hydro’s internal project manager, or sometimes it might be a regulatory official from NJDEP.

WEEKLY MEETINGS.  Another critical part of construction oversight is facilitating weekly coordination meetings. The weekly meeting is usually attended by the contractor, the engineering firm, and the client.  The parties will discuss what has happened thus far at the site and what still needs to happen, allowing them to establish action items. Occasionally, other entities like organizations that provided funding for a project or regulatory agencies, will also be involved in those conversations. The weekly meetings are designed to keep everybody on task and help to ensure every party’s goals and needs are being met.

DOCUMENTATION.  Anytime field work is being conducted, it is essential to document the happenings and the progress made. This documentation usually comes in the form of a Daily Field Report (DFR). A DFR includes information about the work performed on a given day, such as measurements, quantities of structures installed, and how that installation process went. Also included in the DFRs are clear and descriptive photographs.

COMMUNICATION.  Working on any project, it’s important to make sure all involved parties understand the reason behind each installation. It is often easier for a construction team to implement plans correctly if they know and understand why each part of it is important and included in the project. Explaining why a task needs to be completed also helps relieve tension that could potentially arise between the engineer and the contractor. It is essential to make sure every person on the project team is on the same page.

PUBLIC OUTREACH.  Another critical aspect of construction oversight is having the ability to successfully communicate with the public. Members of the community surrounding a site need to be kept apprised of the goings on so they can remain safe during the construction period and understand the goals of the project. When citizens understand the purpose and goals of a project, they are more likely to support and respect it.

REGULATORY COMPLIANCE.  Understanding the permitting surrounding a project is also essential to success as a construction oversight engineer. The engineer has to understand the ins and outs of the permitting and regulations in order to be able to make decisions about changes in the plan and to be able to successfully point the contractor in the correct and compliant direction.

Construction oversight is a tedious and incredibly important job, yet I really enjoy it because it gives me a new and better understanding of the engineering design process,” explains Casey. He feels it gives him a much more practical understanding of engineering design, as he has seen what kinds of plans are actually implementable and what that process looks like. “Watching a design plan get implemented brings the project full circle and allows me to take that knowledge and experience back to the office and back into the design process.

Princeton Hydro provides construction oversight services to private, public, and nonprofit clients for a variety of ecosystem restoration, water resource, and geotechnical projects across the Northeast.  Learn more.

Casey graduated from Virginia Tech in 2018 with a degree in Biological Systems Engineering and now works as a staff engineer for the firm with a focus in water resources engineering. He has experience in ecological restoration, flood management, water quality analysis, and best management practices. His experience also includes construction oversight for dam removal and restoration projects as well as design, technical writing, and drafting for a wide variety of water resources engineering projects. In his free time Casey very much enjoys travelling, hiking, skiing, and camping.

If you enjoyed this blog, check out another one from our “Day in the Life” series, and stay tuned for more:

A Day in the Life of a Stormwater Inspector

Managing Urban Stormwater Runoff and Revitalizing Natural Habitat at Harveys Lake

Measuring 630+ acres, Harveys Lake, located in Luzerne County, Pennsylvania, just northeast of Wilkes-Barre, is the largest natural lake (by volume) within the Commonwealth of Pennsylvania, and is one of the most heavily used lakes in the area. It is classified as a high quality – cold water fishery habitat (HQ-CWF) and is designated for protection under the classification.

Since 2002, The Borough of Harveys Lake and the Harveys Lake Environmental Advisory Council  has worked with Princeton Hydro on a variety of lake management efforts focused around maintaining high water quality conditions, strengthening stream banks and shorelines, and managing stormwater runoff.

Successful, sustainable lake management requires identifying and correcting the cause of eutrophication as opposed to simply reacting to the symptoms of eutrophication (algae and weed growth). As such, we collect and analyze data to identify the problem sources and use these scientific findings to develop a customized management plan that includes a combination of biological, mechanical, and source control solutions. Here are some examples of the lake management strategies we’ve utilized for Harveys Lake:

 

Floating Wetland Islands

Floating Wetland Islands (FWIs) are an effective alternative to large, watershed-based natural wetlands. Often described as self-sustaining, FWIs provide numerous ecological benefits. They assimilate and remove excess nutrients, like nitrate and phosphorous, that could fuel algae growth; provide habitat for fish and other aquatic organisms; help mitigate wave and wind erosion impacts; and provide an aesthetic element. FWIs are also highly adaptable and can be sized, configured, and planted to fit the needs of nearly any lake, pond, or reservoir.

Five floating wetland islands were installed in Harveys Lake to assimilate and reduce nutrients already in the lake. The islands were placed in areas with high concentrations of nutrients, placed 50 feet from the shoreline and tethered in place with steel cables and anchored. A 250-square-foot FWI is estimated to remove up to 10 pounds of nutrients per year, which is significant when it comes to algae.

Princeton Hydro worked with the Harveys Lake Environmental Advisory Council and the Borough of Harveys Lake to obtain funding for the FWIs through the Pennsylvania Department of Environmental Protection (PADEP).

 

Streambank & Shoreline Stabilization

Harveys Creek

The shoreline habitat of Harveys Lake is minimal and unusual in that a paved road encompasses the lake along the shore with most of the homes and cottages located across the roadway, opposite the lake. In addition to the lake being located in a highly populated area, the limited shoreline area adds to the challenges created by urban stormwater runoff.

Runoff from urban lands and erosion of streambanks and shorelines delivers nutrients and sediment to Harveys Lake. High nutrient levels in the lake contribute to algal blooms and other water quality issues. In order to address these challenges, the project team implemented a number of small-scale streambank and inlet stabilization projects with big impacts.

The work included the stabilization of the streambank downstream for Harveys Lake dam and along Harveys Creek, the design and installation of a riparian buffer immediately along the lake’s shoreline, and selective dredging to remove sediment build up in critical areas throughout the watershed.

 

Invasive Species Management

Hydrilla (Hydrilla verticillata), an aggressively growing aquatic plant, took root in the lake in 2014 and quickly infected 250 acres of the lake in a matter of three years. If left untreated, hydrilla will grow to the water’s surface and create a thick green mat, which prevents sunlight from reaching native plants, fish and other organisms below. The lack of sunlight chokes out all aquatic life.

In order to prevent hydrilla from spreading any further, Princeton Hydro and SePRO conducted an emergency treatment of the impacted area utilizing the systemic herbicide Sonar® (Fluridone), a clay-based herbicide. SonarOne, manufactured by SePRO, blocks hydrilla’s ability to produce chloroplasts, which in turn halts the photosynthetic process. The low-concentration herbicide does not harm fish, wildlife or people using the lake. Surveys conducted after the treatment showed it was working – the hydrilla had turned white and was dying off. Additional Sonar treatments followed and efforts to eradicate hydrilla in the lake continue.

Dr. Fred Lubnow, our Director of Aquatic Programs, estimates complete eradication of the aquatic plant could take around five years. Everyone can do their part in preventing the spread of this and other invasive species. Boaters and lake users must be vigilant and remove all vegetation from the bottom of watercrafts and trailers.

 

Stormwater Best Management Practices (BMPs)

In 2009, Princeton Hydro developed a stormwater implementation plan (SIP) for Harveys Lake. The goal of the stormwater/watershed-based efforts was to reduce the lake’s existing annual total phosphorus load to be in full compliance with the established Total Maximum Daily Load (TMDL). This TMDL is related to watershed-based pollutant loads from total phosphorus (TP) and total suspended solids (TSS), which can contribute to algal blooms.

A number of structural urban runoff projects were implemented throughout the watershed. This includes the design and construction of two natural stream channel projects restoring 500 linear feet of tributaries and reducing the sediment and nutrient loads entering the lake. A series of 38 urban runoff BMPs, including nutrient separating devices and roadside infiltration, were installed in areas immediately adjacent to the lake to further reduce the loads of nutrients and other pollutants reaching the lake.

The photos below show a stormwater project that was completed in the Hemlock Gardens Section of the Watershed. Hemlock Gardens is a 28-acre section of land located in the southeastern portion of the watershed. It contains approximately 26 homes, has very steep slopes, unpaved dirt roads, and previously had no stormwater infrastructure in place.

Two structural stormwater BMPs were installed:

  • A nutrient separating baffle box, which utilizes a three-chamber basin with screens to collect leaf litter, grass clippings and trash
  • A water polishing unit that provides a platform for secondary runoff treatment

In 1994, Harveys Lake was identified as “impaired” by PADEP due to large algal blooms. In 2014, Harveys Lake was removed from the list of impaired waters. Project partners attribute the recovery of this lake to the stream restoration, urban runoff BMP implementation, and the use of in-lake nutrient reduction strategies.

The Harveys Lake Watershed Protection Plan Implementation Project proved that despite the lake being located in an urbanized watershed, it is possible to implement cost-effective green infrastructure and stormwater retrofit solutions capable of significantly decreasing pollutant loading to the lake.

To learn more about our lake and pond management services or schedule a consultation, visit: http://bit.ly/pondlake.

Four Ways Climate Change Can Affect Your Lake

The Local Effects of Climate Change Observed Through our Community Lakes

Climate change is an enormous concept that can be hard to wrap your head around. It comes in the form of melting ice caps, stronger storms, and more extreme seasonal temperatures (IPCC, 2018). If you’re an avid angler, photographer, swimmer, boater, or nature enthusiast, it’s likely that because of climate change you’ll bear witness to astonishing shifts in nature throughout the greater portion of your lifetime. This is especially true with respect to lakes.

2015-07-07-10-01-20

Lakes are living laboratories through which we can observe the local effects of climate change in our own communities. Lake ecosystems are defined by a combination of various abiotic and biotic factors. Changes in hydrology, water chemistry, biology, or physical properties of a lake can have cascading consequences that may rapidly alter the overall properties of a lake and surrounding ecosystem. Most of the time the results are negative and the impacts severe.

“Managing loads of phosphorous in watersheds is even more important as the East Coast becomes increasingly warmer and wetter thanks to climate change,” said Dr. Fred Lubnow, Director of Aquatics in a recent NJ.com interview. “Climate change will likely need to be dealt with on a national and international scale. But local communities, groups, and individuals can have a real impact in reducing phosphorous levels in local waters.”

Recognizing and monitoring the changes that are taking place locally brings the problems of climate change closer to home, which can help raise awareness and inspire environmentally-minded action.

We put together a list of four inter-related, climate change induced environmental impacts that can affect lakes and lake communities:

1. Higher Temperatures = Shifts in Flora and Fauna Populations

The survival of many lake organisms is dependent on the existence of set temperature ranges and ample oxygen levels. The amount of dissolved oxygen (DO) present in a lake is a result of oxygen diffusion from the atmosphere and its production by algae and aquatic plants via photosynthesis. An inverse relationship exists between water temperature and DO concentrations. Due to the physical properties of water, warmer water holds less DO than cooler water.

This is not good news for many flora and fauna, such as fish that can only survive and reproduce in waters of specific temperatures and DO levels. Lower oxygen levels can reduce their ability to feed, spawn and survive. Populations of cold water fish, such as brown trout and salmon, will be jeopardized by climate change (Kernan, 2015).

358-001-carp-from-churchvilleAlso, consider the effects of changing DO levels on fish that can tolerate these challenging conditions. They will thrive where others struggle, taking advantage of their superior fitness by expanding their area of colonization, increasing population size, and/or becoming a more dominant species in the ecosystem. A big fish in a little pond, you might say. Carp is a common example of a thermo-tolerant fish that can quickly colonize and dominate a lake’s fishery, in the process causing tremendous ecological impact (Kernan, 2010).

2. Less Water Availability = Increased Salinity

Just as fish and other aquatic organisms require specific ranges of temperature and dissolved oxygen to exist, they must also live in waters of specific salinity. Droughts are occurring worldwide in greater frequency and intensity. The lack of rain reduces inflow and higher temperatures promote increased evaporation. Diminishing inflow and dropping lake levels are affecting some lakes by concentrating dissolved minerals and increasing their salinity.

Studies of zooplankton, crustaceans and benthic insects have provided evidence of the consequences of elevated salinity levels on organismal health, reproduction and mortality (Hall and Burns, 2002; Herbst, 2013; Schallenberg et al., 2003). While salinity is not directly related to the fitness or survival rate of all aquatic organisms, an increase in salinity does tend to be stressful for many.

3. Nutrient Concentrations = Increased Frequency of Harmful Algal Blooms

Phosphorus is a major nutrient in determining lake health. Too little phosphorus can restrict biological growth, whereas an excess can promote unbounded proliferation of algae and aquatic plants.

before_strawbridgelake2If lake or pond water becomes anoxic at the sediment-water interface (meaning the water has very low or completely zero DO), phosphorus will be released from the sediment. Also some invasive plant species can actually “pump” phosphorus from the sediments and release this excess into the water column (termed luxurious uptake). This internally released and recycled sedimentary phosphorus can greatly influence lake productivity and increase the frequency, magnitude and duration of algae blooms. Rising water temperatures, declining DO and the proliferation of invasive plants are all outcomes of climate change and can lead to increases in a lake’s phosphorus concentrations and the subsequent growth and development of algae and aquatic plants.

Rising water temperatures significantly facilitate and support the development of cyanobacteria (bluegreen algae) blooms. These blooms are also fueled by increasing internal and external phosphorus loading. At very high densities, cyanobacteria may attain harmful algae bloom (HAB) proportions. Elevated concentrations of cyanotoxins may then be produced, and these compounds seriously impact the health of humans, pets and livestock.

rain-garden-imagePhosphorus loading in our local waterways also comes from nonpoint sources, especially stormwater runoff. Climate change is recognized to increase the frequency and magnitude of storm events. Larger storms intensify the mobilization and transport of pollutants from the watershed’s surrounding lakes, thus leading to an increase in nonpoint source loading. Additionally, larger storms cause erosion and instability of streams, again adding to the influx of more phosphorus to our lakes. Shifts in our regular behaviors with regards to fertilizer usage, gardening practices and community clean-ups, as well as the implementation of green infrastructure stormwater management measures can help decrease storm-related phosphorus loading and lessen the occurrence of HABs.

4. Cumulative Effects = Invasive Species

A lake ecosystem stressed by agents such as disturbance or eutrophication can be even more susceptible to invasive species colonization, a concept coined “invasibility” (Kernan, 2015).

For example, imagine that cold water fish species A has experienced a 50% population decrease as a result of warming water temperatures over ten years. Consequently, the fish’s main prey, species B, has also undergone rapid changes in its population structure. Inversely, it has boomed without its major predator to keep it in check. Following this pattern, the next species level down – species B’s prey, species C – has decreased in population due to intense predation by species B, and so on. Although the ecosystem can potentially achieve equilibrium, it remains in a very unstable and ecologically stressful state for a prolonged period of time. This leads to major changes in the biotic assemblage of the lake and trickle-down changes that affect its recreational use, water quality and aesthetics.

• • •

Although your favorite lake may not experience all or some of these challenges, it is crucial to be aware of the many ways that climate change impacts the Earth. We can’t foresee exactly how much will change, but we can prepare ourselves to adapt to and aid our planet. How to start? Get directly involved in the management of your lake and pond. Decrease nutrient loading and conserve water. Act locally, but think globally. Get out and spread enthusiasm for appreciating and protecting lake ecosystems. Also, check out these tips for improving your lake’s water quality.


References

  1. IPCC. “Summary for Policymakers. “Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.” World Meteorological Organization, Geneva, Switzerland, 32 pp. 2018.
  2. Hall, Catherine J., and Carolyn W. Burns. “Mortality and Growth Responses of Daphnia Carinata to Increases in Temperature and Salinity.” Freshwater Biology 47.3 (2002): 451-58. Wiley. Web. 17 Oct. 2016.
  3. Herbst, David B. “Defining Salinity Limits on the Survival and Growth of Benthic Insects for the Conservation Management of Saline Walker Lake, Nevada, USA.” Journal of Insect Conservation 17.5 (2013): 877-83. 23 Apr. 2013. Web. 17 Oct. 2016.
  4. Kernan, M. “Climate Change and the Impact of Invasive Species on Aquatic Ecosystems.” Aquatic Ecosystem Health & Management (2015): 321-33. Taylor & Francis Online. Web. 17 Oct. 2016.
  5. Kernan, M. R., R. W. Battarbee, and Brian Moss. “Interaction of Climate Change and Eutrophication.” Climate Change Impacts on Freshwater Ecosystems. 1st ed. Chichester, West Sussex, UK: Wiley-Blackwell, 2010. 119-51. ResearchGate. Web. 17 Oct. 2016.
  6. Schallenberg, Marc, Catherine J. Hall, and Carolyn W. Burns. “Consequences of Climate-induced Salinity Increases on Zooplankton Abundance and Diversity in Coastal Lakes”Marine Ecology Progress Series 251 (2003): 181-89. Inter-Research Science Center. Inter-Research. Web.

A Day in the Life of a Stormwater Inspector

Walking through a park isn’t always a walk in the park when it comes to conducting stormwater inspections. Our team routinely spots issues in need of attention when inspecting stormwater infrastructure; that’s why inspections are so important.

Princeton Hydro has been conducting stormwater infrastructure inspections for a variety of municipalities in the Mid-Atlantic region for a decade, including the City of Philadelphia. We are in our seventh year of inspections and assessments of stormwater management practices (SMPs) for the Philadelphia Water Department. These SMPs are constructed on both public and private properties throughout the city and our inspections focus on areas served by combined sewers. 

Our water resource engineers are responsible for construction oversight, erosion and sediment control, stormwater facilities maintenance inspections, and overall inspection of various types of stormwater infrastructure installation (also known as “Best Management Practices” or BMPs).

The throat of a sinkhole observed by one of our engineers while on site.

Our knowledgeable team members inspect various sites regularly, and for some municipalities, we perform inspections on a weekly basis. Here’s a glimpse into what a day of stormwater inspection looks like:

The inspector starts by making sure they have all their necessary safety equipment and protection. For the purposes of a simple stormwater inspection the Personal Protection Equipment (PPE) required includes a neon safety vest, hard hat, eye protection, long pants, and boots. Depending on the type of inspection, our team may also have to add additional safety gear such as work gloves or ear plugs. It is recommended that inspectors hold CPR/First Aid and OSHA 10 Hour Construction Safety training certificates. 

Once they have their gear, our inspection team heads to the site and makes contact with the site superintendent. It’s important to let the superintendent know they’re there so that 1) they aren’t wondering why a random person is perusing their construction site, and 2) in case of an emergency, the superintendent needs to be aware of every person present on the site.

Once they arrive, our team starts by walking the perimeter of the inspection site, making sure that no sediment is leaving the project area. The team is well-versed in the standards of agencies such as the Pennsylvania Department of Environmental Protection, the Pennsylvania Department of Transportation, the New Jersey Department of Environmental Protection, and local County Soil Conservation Districts, among others. These standards and regulations dictate which practices are and are not compliant on the construction site.

After walking the perimeter, the inspection team moves inward, taking notes and photos throughout the walk. They take a detailed look at the infrastructure that has been installed since the last time they inspected, making sure it was correctly installed according to the engineering plans (also called site plans or drainage and utility plans). They also check to see how many inlets were built, how many feet of stormwater pipe were installed, etc.

If something doesn’t look quite right or needs amending, our staff makes recommendations to the municipality regarding BMPs/SMPs and provides suggestions for implementation.

One example of an issue spotted at one of the sites was a stormwater inlet consistently being inundated by sediment. The inlet is directly connected o the subsurface infiltration basin. When sediment falls through the inlet, it goes into the subsurface infiltration bed, which percolates directly into the groundwater. This sediment is extremely difficult to clean out of the subsurface bed, and once it is in the bed, it breaks down and becomes silt, hindering the function of the stormwater basin.

To remedy this issue, our inspection team suggested they install stone around the perimeter of the inlet on three sides. Although this wasn’t in the original plan, the stones will help to catch sediment before entering the inlet, greatly reducing the threat of basin failure.

Once they’ve thoroughly inspected the site, our team debriefs the site superintendent with their findings. They inform the municipality of any issues they found, any inconsistencies with the construction plans, and recommendations on how to alleviate problems. The inspector will also prepare a Daily Field Report, summarizing the findings of the day, supplemented with photos.

In order to conduct these inspections, one must have a keen eye and extensive stormwater background knowledge. Not only do they need to know and understand the engineering behind these infrastructure implementations, they need to also be intimately familiar with the laws and regulations governing them. Without these routine inspections, mistakes in the construction and maintenance of essential stormwater infrastructure would go unnoticed. Even the smallest overlook can have dangerous effects, which is why our inspections team works diligently to make sure that will not happen.

Our team conducts inspections for municipalities and private entities throughout the Northeast. Visit our website to learn more about our engineering and stormwater management services.

 

PHOTOS: #BagThePhrag Update from Roebling Park

We’re gearing up for another invasive species treatment event at Roebling Park!

Located in Hamilton Township, New Jersey, Mercer County’s John A. Roebling Memorial Park offers residents in the surrounding area a freshwater marsh with river fishing, kayaking, hiking, and wildlife-watching. The park contains the northernmost freshwater tidal marsh on the Delaware River, Abbott Marshland. Since the mid-1990s, many public and private partnerships have developed to help support the preservation of this important and significant marsh.

Our Field Operations Team was recently at the project site assessing present invasive species and re-evaluating access points for our treatment equipment. Check out these photos from their visit!

 

For more information on this marsh restoration project at John A. Roebling Park, visit our original project blog:

Restoring the Northernmost Freshwater Tidal Marsh on the Delaware River