Ecological Uplift in an Urban Setting

The City of Elizabeth, the fourth most populous in New Jersey, is not exactly the first place that comes to mind when envisioning a wild landscape. This bustling urban area is well known for its Port Newark-Elizabeth Marine Terminal and the Philips 66 Bayway Refinery, and sits at the intersection of several major roadways like the NJ Turnpike and the Goethals Bridge. The landscape, which was once teeming with dense wetlands and associated habitats, is now heavily urbanized with a vast mix of residential, commercial, and industrial properties. The largely channelized Elizabeth River courses through the city for 4.2 miles before draining into the Arthur Kill waterway. However, in this 14-square mile city, native flora and fauna are taking root again thanks to ecological restoration and mitigation efforts.

Urban landscapes like Elizabeth can pose significant challenges for restoration efforts, but they also provide an array of opportunity for significant ecological uplift.

In 2004, Princeton Hydro was retained to restore an 18-acre site adjacent to the Elizabeth Seaport Business Park, which is located in an area that was once part of a large contiguous wetland system abutting Newark Bay. The site was comprised of a significantly disturbed mosaic of wetland and upland areas and a monoculture of Phragmites australis, also known as Common Reed, on historic fill. Historic fill consists of non-native material, historically placed to raise grades, and typically contains contaminated material not associated with the operations of the site on which it was placed.

The highly invasive Phragmites australis had overtaken most of the wetland areas, and the upland woodland areas only contained four tree species, mostly Eastern Cottonwood, with very low wildlife value. The 18-acre site had huge potential but was significantly degraded and was being vastly underutilized. Overall, the mitigation plan focused on the enhancement of existing wetland and transition areas to increase the area’s wildlife value through the establishment of a more desirable, diverse assemblage of native species subsequent to eradication of non-native-invasive species.

2005 (Before Plantings)
2019
In 2004, Prologis hired Princeton Hydro to restore an 18-acre area adjacent to the Elizabeth Seaport Business Park, which a significantly disturbed and degraded mosaic of wetland and upland areas. This project serves as an example of how degraded urban areas can be successfully rehabilitated and the land’s natural function restored and enhanced.

The freshwater wetland aspect of the mitigation plan, which included inundated emergent, emergent, and forested habitat, was designed to be a combination of wetland creation (2.40 acres) and enhancement (8.79 acres), emphasizing the establishment of more species rich wetlands in order to increase biodiversity and improve the site’s wildlife food value.

The upland forest aspect of the mitigation plan involved the enhancement of 5.40 acres and creation of 1.45 acres of upland forest to foster the development of a species rich and structurally complex upland forest. The upland areas targeted for enhancement/creation consisted of areas where woody vegetation was lacking or forested areas that were dominated by eastern cottonwood.

2008
2019
The 18-acre site in Elizabeth, NJ had huge potential but was significantly degraded and was being vastly underutilized. The mitigation plan emphasized the establishment of more species rich wetlands in order to increase biodiversity and improve the site’s wildlife habitat value.

The project team worked to remove Phragmites australis from the site utilizing a combination of herbicide and mechanical removal techniques. Once the Phragmites australis was cleared, the team installed 27,000 two-inch native herbaceous plant plugs in the wetland portions of the mitigation site, and 2,705 native trees/shrubs throughout the site.

In order to ensure the continued success of the mitigation project, monitoring is regularly conducted at the site. A monitoring report conducted at the end of 2019 revealed a plethora of well-established habitat areas, a diverse community of plant and tree species, and a thriving, highly-functional landscape.

2004 (Before Plantings)
september 2019
In 2004, before the restoration work began, the site consisted of degraded Phragmites australis dominated wetlands and an urban woodland area dominated by Eastern cottonwood. The planting component of the mitigation project commenced in 2015, and the installation of all woody plant material began Fall 2015 and was completed in Fall 2016. The 2019 Monitoring Report revealed the plantings are well-established and the area is thriving.

Presently, the Elizabeth Seaport Business Park Mitigation Site boasts a variety of productive wildlife habitats that are rare in a highly urbanized setting and provides valuable ecosystem services, including sediment retention and roosting, foraging, and nesting opportunities for both resident and migratory bird species with over 150 bird species identified within the mitigation site.

2008
2019
The Elizabeth Seaport Business Park site was comprised of a monoculture of Phragmites australis, also known as Common Reed. The mitigation plan focused on enhancing the existing wetland by eradicating non-native-invasive plant species, like Phragmites, and establishing more diverse population of productive, native species with high ecological value.

This project serves as an example of how degraded urban areas can be successfully rehabilitated and the land’s natural function restored and enhanced.  If you’d like to learn more about this project from our Natural Resources Senior Project Manager Michael Rehman, check out the video of his presentation at the 2020 Delaware Wetlands Conference below.

We’re at the Delaware Wetlands Conference and our Senior Project Manager, Michael Rehman, is presenting on a successful urban wetland restoration in Elizabeth, NJ.

Posted by Princeton Hydro on Thursday, January 30, 2020

 

If you’re interested in learning more about our wetland restoration and mitigation services, go here!

FREE DOWNLOADS: Mid-Atlantic Stream Restoration Conference Presentations

The Resource Institute hosted its 9th Annual Mid-Atlantic Stream Restoration Conference in Baltimore, Maryland, where water resource professionals, researchers, and practitioners come together for three days to share ideas and learn about stream restoration planning, assessment, design, construction, evaluation, and other topical stream issues. The conference, which was themed Building Resilient Streams in the Mid-Atlantic and Northeast regions, included presentations, discussions, exhibits, and pre-conference workshops. Princeton Hydro participated in three presentations on a variety of topics. Below, we provide a synopsis and free download of each presentation:

Innovative Design and Funding Approaches for Dam Removal Projects Where an Unfunded Mandate Exists

Lead Presenter: Kirk Mantay, PWS, GreenTrust Alliance, Inc.
Co-Authors: Geoffrey Goll, P.E.; Princeton Hydro President; John Roche, Maryland Department of Environment; and Brett Berkley, GreenVest.

The presentation provides a detailed look at the removal of the Martin Dam in Fallston, Maryland, and how project partners were able to drastically expand the footprint of this emergency dam removal to generate enough ecological restoration benefits to adequately fund the dam removal itself.

The Martin Dam was constructed in 1965 as part of USDA’s sustainable farms pond construction initiative, which promoted aquaculture and subsistence fish production on small farms across the region as an income source for agricultural producers. Dam-related impacts included the permanent loss of spring-fed sedge wetlands, ditching of forested floodplain wetlands, pollution from stream bank entrenchment, and thermal impacts to a wild brook trout population downstream.

Overtime, the dam structure began to degrade. With each state and local agency inspection that was conducted, the dam increased in hazard category. In 2016, the Maryland Department of the Environment (MDE) was forced to list the dam as a, “public safety hazard at risk of immanent failure.” The landowner, unable to fund the dam removal, contacted GreenTrust Alliance (GTA), a regional green infrastructure nonprofit organization, for help.

By emphasizing the ecological benefits of restored wetlands and streams above and below the dam as well as the critical public safety hazard faced by residents and motorists downstream, GTA, in partnership with Princeton Hydro and GreenVest, was able to secure restoration funding for the site. The design and permitting was lead by Princeton Hydro, and the dam was safely breached as part of restoration construction in January 2019.

Learn more and download the full presentation.

 

Columbia Lake Dam Removal; Using Drones for Quantitative Evaluation of River Restoration

Lead Presenter: Beth Styler-Barry of The Nature Conservancy
Co-Authors from Princeton Hydro: Geoffrey Goll, P.E., President; Casey Schrading, EIT, Staff Engineer; Kelly Klein, Senior Project Manager, Natural Resources; and Christiana Pollack, CFM, GISP, Senior Project Manager, Environmental Scientist.

In order to explore the use of drone or UAV technology to evaluate the effects of dam removals, the presentation showcases the Columbia Lake Dam removal, the largest dam removal in New Jersey to date.

The Columbia Lake Dam, built in 1909, was 18 feet high, 330 feet long dam, and stretched more than 1.5 miles on the Paulins Kill less than 0.25 miles upstream from its confluence with the Delaware River. As part of The Nature Conservancy’s (TNC) mission to improve the quality of the Paulins Kill, removing this “first blockage” was the cornerstone of the larger mission. Princeton Hydro served as the engineer-of-record, designing and permitting this project. Dam removal activities commenced in 2018 and were finalized in 2019. Its removal opens 10 miles of river for fish migration and improves recreation access, floodplain reconnection, habitat enhancement and higher water quality.

TNC will conduct five years of monitoring, a vitally important component of this project, to determine long-term ecological uplift, short-term positive and negative effects, and to develop data to provide information for future dam removals. And, as a result of the programmable and repeatable nature of drone flight paths, such monitoring will be able to be conducted for years and decades, producing invaluable data for research and future project design.

The presentation reviews the various parameters investigated, the results and significance of the data retrieved, and recommendations for the use of drone technology for future ecosystem restoration projects.

Learn more and download the full presentation.

Modeling 3D Rivers in AutoCAD to Enhance Design and Deliverables

Lead Presenter: Daniel Ketzer, PE, Princeton Hydro Senior Project Manager, River Restoration
Co-Authors from Princeton Hydro: Eric Daley, Water Resources Engineer; Cory Speroff, MLA, ASLA, CBLP, Landscape Designer; and Sumantha Prasad, PE, ENV SP, Water Resource Engineer

This presentation provides an overview on how to create 3D river models based on geomorphic input to enhance the overall accuracy and quality of a river restoration project.

In river restoration, the proposed geometry of the river channel is the key part of the design. It impacts earthwork, utility conflicts, plan set layout, and many other aspects of the project. In larger projects with reaches measuring thousands of feet and greater, manual grading is extremely time consuming and tedious; and determining the entire implication of the proposed design is difficult to achieve when simply analyzing proposed cross-sections and profiles. To increase efficiency and maintain uniformity throughout the subject reach developing a 3D-surface model of the proposed restoration reduces design time and increases quality. AutoCAD Civil 3D can be used to convert the proposed profiles and cross-sections from a geomorphic design into a 3D surface of the river corridor.

The presentation goes through the key steps that need to be taken and strategic questions that need to be asked when modeling 3D rivers in AutoCAD along with important tips and reminders.

Learn more and download the full presentation.

Stay tuned for our Spring Events Spotlight to learn how you can participate in upcoming environmental events! Click here to read more about Princeton Hydro’s river restoration services.

Regional Watershed Planning: A Critical Strategy to Prevent HABs

Photo by @likethedeaadsea, submitted during our 2019 #LAKESAPPRECIATION Instagram Photo Contest.

Harmful Algae Blooms (HABs) were in the spotlight last summer due to the severe impacts they had on lakes throughout the country. Nation-wide, HABs caused beach closures, restricted lake usage, and led to wide-ranging health advisories. There were 39 confirmed harmful algal bloom (HAB) outbreaks in New Jersey alone.

As a reminder, HABs are rapid, large overgrowths of cyanobacteria. These microorganisms are a natural part of aquatic ecosystems, but, under the right conditions (primarily heavy rains, followed by hot, sunny days), these organisms can rapidly increase to form cyanobacteria blooms, also known as HABs. HABs can cause significant water quality issues; produce toxins that are incredibly harmful (even deadly) to humans, animals, and aquatic organisms; and negatively impact economic health, especially for communities dependent on the income of jobs and tourism generated through their local lakes.

“A property’s value near an infested lake can drop by up to $85,000, and waterside communities can lose millions of dollars in revenue from tourism, boating, fishing and other sectors,” reports Princeton Hydro President Geoff Goll, P.E.

Generally, the health of a private lake is funded and managed in isolation by the governing private lake association group. But, in order to mitigate HABs and protect the overall health of our local waterbodies, it’s important that we look beyond just the lake itself. Implementing regional/watershed-based planning is a critical step in preventing the spread of HABs and maintaining the overall health of our natural resources.

At the end of 2019, the Borough of Ringwood became the first municipality in New Jersey to take a regional approach to private lake management through a public-private partnership with four lake associations.

The Borough of Ringwood is situated in the heart of the New Jersey Highlands, is home to several public and private lakes, and provides drinking water to millions of New Jersey residents. In order to take an active role in the management of these natural resources, Ringwood hired Princeton Hydro, a leader in ecological and engineering consulting, to design a municipal-wide holistic watershed management plan that identifies and prioritizes watershed management techniques and measures that are best suited for immediate and long-term implementation.

Map showing the four private lakes involved in the Borough of Ringwood's regional holistic watershed management plan.

Funding for Ringwood’s Watershed-based Assessment is being provided by the New Jersey Highlands Council through a grant reimbursement to the Borough of Ringwood. The Highlands Council offers grant funding and assistance to support the development and implementation of a wide range of planning initiatives. Examples of the types of efforts that can be funded for municipalities and counties include:

  • Land Use and Development projects like sustainable economic development planning and green building and environmental sustainability planning;
  • Infrastructure projects like stormwater management and water use/conservation management;
  • Resource Management projects like habitat conservation, lake management and water quality monitoring; and
  • Recreation and Preservation projects like land preservation and stewardship, farmland preservation and agriculture retention, and historic preservation.

Chris Mikolajczyk, CLM, Princeton Hydro’s Aquatics Senior Project Manager and the Ringwood project’s lead designer, presented with Keri Green of the NJ Highlands Council, at a recent New Jersey Coalition of Lake Associations meeting. The duo showcased Ringwood’s unique approach, spread the word about available funding through the NJ Highlands Council, and encourage other municipalities to follow Ringwood’s lead in taking a regional approach to lake and watershed management.

Mikolajczyk said, “This regional approach to lake and watershed management is a no-brainer from a scientific, technical, and community point of view. Historically, however, municipal governments and private lake associations have rarely partnered to take such an approach. The hope is that the Borough of Ringwood efforts, funded by the New Jersey Highlands Council, will set a precedent for this logical watershed management strategy and open the door for future public-private partnerships.”

This integrated approach to watershed and lake management is an important preventative measure to improve water quality for millions of people and reduce potential future incidents of aquatic invasive species and harmful algal blooms throughout the region.

To learn more about NJ Highlands Council and available grant funding, go here.
To download a complete copy of the presentations given by Mikolajczyk and Green at the recent NJCOLA meeting, go here.
To learn more about Princeton Hydro’s pond, lake and watershed management services, go here.

 

Feasibility Study Identifies Key Opportunities for Hudson River Habitat Restoration

Hudson River Bear Mountain Bridge (Photo from Wikipedia)

The Hudson River originates at the Lake Tear of the Clouds in the Adirondack Mountains at an elevation of 4,322 feet above sea level. The river then flows southward 315 miles to New York City and empties into the New York Harbor leading to the Atlantic Ocean. The Hudson River Valley lies almost entirely within the state of New York, except for its last 22 miles, where it serves as the boundary between New York and New Jersey.

Hudson River Basin (Image by USACE)Approximately 153 miles of the Hudson River, between the Troy Dam to the Atlantic Ocean, is an estuary. An estuary is defined by the USEPA as “a partially enclosed, coastal water body where freshwater from rivers and streams mixes with salt water from the ocean. Estuaries, and their surrounding lands, are places of transition from land to sea. Although influenced by the tides, they are protected from the full force of ocean waves, winds and storms by landforms such as barrier islands or peninsulas.”

The Hudson River’s estuary encompasses regionally significant habitat for anadromous fish and globally rare tidal freshwater wetland communities and plants, and also supports significant wildlife concentrations. As a whole, the Hudson River provides a unique ecosystem with highly diverse habitats for approximately 85% of New York State’s fish and wildlife species, including over 200 fish species that rely on the Hudson River for spawning, nursery, and forage habitat.

The Hudson is an integral part of New York’s identity and plays a vital role in the lives of the people throughout the area. Long valued as a transportation corridor for the region’s agricultural and industrial goods, and heavily used by the recreation and tourism industries, the Hudson plays a major role in the local economy. It also provides drinking water for more than 100,000 people.

At the end of the American Revolution, the population in the Hudson River Valley began to grow. The introduction of railroad travel in 1851 further accelerated development in the area. Industrial buildings were erected along the river, such as brick and cement manufacturing, which was followed by residential building. Along with the aforementioned development, came the construction of approximately 1,600 dams and thousands of culverts throughout the Hudson River.

According to the U.S. Army Corps of Engineers (USACE), these human activities have significantly degraded the integrity of the Hudson River ecosystem and cumulatively changed the morphology and hydrology of the river. Over time, these changes have resulted in large-scale losses of critical shallow water and intertidal wetland habitats, and fragmented and disconnected habitats for migratory and other species. Most of this loss and impact has occurred in the upper third portion of the estuary.

As part of the effort to restore the vital river ecosystem, the USACE New York District launched a Hudson River Habitat Restoration Feasibility Study, which helps to establish and evaluate baseline conditions, develop restoration goals and objectives, and identify key restoration opportunities. Princeton Hydro participated in data collection and analysis, conceptual restoration designs, and preparation of the USACE Environmental Assessment for the Hudson River Habitat Restoration Ecosystem Restoration Draft Integrated Feasibility Study and Environmental Assessment.

Basic map depicting project sites (Created by Princeton Hydro)The study area includes the Hudson River Valley from the Governor Mario M. Cuomo Bridge downstream to the Troy Lock and Dam upstream. The primary restoration objectives include restoring a mosaic of interconnected, large river habitats and restoring lost connectivity between the Hudson River and adjacent ecosystems.

A total of six sites were evaluated using topographic surveys, installation and monitoring of tide gauges, evaluation of dam and fish barrier infrastructure, and field data collection and analysis to support Evaluation of Planned Wetlands (EPW) and Habitat Suitability Indices (HSI) functional assessment models. Literature reviews were also completed for geotechnical, hazardous toxicity radioactive waste, and aquatic organism passage measures.

Multiple alternatives for each of the six sites were created in addition to the preparation of conceptual designs, quantity take-offs, and cost estimates for construction, monitoring and adaptive management, and long-term operation and maintenance activities.

Princeton Hydro also prepared an environmental assessment in accordance with NEPA standards, addressing all six sites along the Hudson River and its tributaries. This assessment served to characterize existing conditions, environmental impacts of the preferred Proposed Action and No Action Alternatives, and regional cumulative environmental impacts. Our final report was highlighted by USACE at the 2019 Planning Community of Practice (PCoP) national workshop at the Kansas City District as an example of a successfully implemented Ecosystem Restoration Planning Center of Expertise (ECO-PCX) project.

USACE’s specific interest in Hudson River restoration stems from the aforementioned dramatic losses of regional ecosystems, the national significance of those ecosystems, and the apparent and significant opportunity for measurable improvement to the degraded ecological resources in the river basin.

The feasibility study is among the first of several critical steps in restoring the Hudson River’s ecosystem function and dynamic processes, and reestablishing the attributes of a natural, functioning, and self-regulated river system. Stay tuned for more updates on the Hudson River restoration efforts.

Don’t Get Sunk: Everything You Need to Know About Sinkholes (Part Two)

Sinkhole in Frederick, Maryland. Credit: Randall Orndorff, U.S. Geological Survey. Public domain.

Sinkholes can be quite terrifying. We see them on the news, on television and in movies seemingly appearing out of nowhere, swallowing up cars and creating calamity in towns across the world. In this two-part blog series, our experts uncover the mystery around sinkholes and arm you with the facts you need to make them less scary.

In part one of the blog series, we discuss what a sinkhole is, three different types of sinkholes, and what causes them to form. In this second part, we explore how to detect sinkholes, what to do if you detect a sinkhole, and the steps taken to repair them.

WELCOME TO PART TWO: DON’T GET SUNK: EVERYTHING YOU NEED TO KNOW ABOUT SINKHOLES
How to Detect a Sinkhole:

Cover-collapse sinkholes (outlined in red) in eastern Bullitt County Kentucky. Photo by Bart Davidson, Kentucky Geological Survey.Not all sinkholes are Hollywood-style monstrosities capable of swallowing your whole house. But even a much smaller, less noticeable sinkhole can do its fair share of harm, compromising your foundation and damaging utilities.

Although sinkholes can be scary to think about, you can take comfort in knowing there are ways to detect them, both visually and experimentally. Often, you can spot the effects of a developing sinkhole before you can spot the hole itself. If you live in an area with characteristics common to sinkhole formation (i.e. “karst terrain,” or types of rocks that can easily be dissolved by groundwater), there are some things you can do to check your property for signs of potential sinkhole formation.

According to the American Society of Home Inspectors, there are key signs you should be on the lookout for in and around your home:

Inside:

  • structural cracks in walls and floors;
  • muddy or cloudy well water;
  • interrupted plumbing or electrical service to a building or neighborhood due to damaged utility lines; and
  • doors and windows that don’t close properly, which may be the result of movement of the building’s foundation.

Outside:

  • previously buried items, such as foundations, fence posts, and trees becoming exposed as the ground sinks;
  • localized subsidence or depression anywhere on the property; in other words, an area that has dropped down relative to the surrounding land;
  • gullies and areas of bare soil, which are formed as soil is carried towards the sinkhole;
  • a circular pattern of ground cracks around the sinking area;
  • localized, gradual ground settling;
  • formation of small ponds, as rainfall accumulates in new areas;
  • slumping or falling trees or fence posts; and
  • sudden ground openings or ground settlement, keeping in mind that sudden earth cracking should be interpreted as a very serious risk of sinkhole or earth collapse.
Actions to Take if You Believe You’ve Detected a Sinkhole:

If you spot any of the signs listed above, or you suspect that you have a sinkhole on or near your property, you should contact your township, public works, or the local engineering firm that represents your municipality right away. If you have discovered a sinkhole that is threatening your house or another structure, be sure to get out immediately to avoid a potentially dangerous situation.

Also, it is highly recommended that:

  • Credit: USGSIf a sinkhole expert can’t get to the area relatively quickly, you ensure that kids and animals keep away, fence/rope-off the area while maintaining a far distance away from the actual sinkhole, keeping in mind that doing so requires extreme caution and is always best left to the experts when possible;
  • Notify your neighbors, local Water Management District, and HOA;
  • Take photos to document the site;
  • Remove trash and debris from around the suspected area in order; and
  • Keep detailed records of all the actions you took.

If you’re trying to determine whether or not you have a sinkhole on your property, there are a few physical tests that can be conducted to determine the best course of action.

In Australia, a courtyard formed a sinkhole. Credit: Earth-Chronicles.comElectro-resistivity testing: This extremely technical test can best be summed up by saying it uses electrodes to determine the conductivity of the soil. Since electricity can’t pass through air, this test shows any pockets where the current didn’t pass through. This is a fairly accurate way to determine if there is a sinkhole and where it is.

Micro-gravity testing: Another incredibly technical method, this test uses sensors that detect the measure of gravity. Since the gravitational pull in a given area should be the same, you can see if there are minute differences in the measurement. If there is a difference, then it’s likely that you have a sinkhole in that area.

If you are still unsure whether or not you live in a sinkhole risk area, you can check with your local, territorial, or national government offices; review geological surveys such as the United States Geological Survey (USGS); and contact an expert.

How a Sinkhole is Repaired?

There are three main techniques experts utilize to repair sinkholes. The type of sinkhole and landowner’s aesthetic preferences determine the methodology used to repair the sinkhole.

The three common methods are:

  1. Inject grout with a drill rig: This uses a piece of large drilling equipment that pierces the ground and goes down into the sinkhole, injecting it with grout/concrete. This method stops the filling of the carbonate crack with sediment since concrete and grout do not break down into such small particles (no piping).
  2. Inverted cone: With this method, the construction crew digs down and finds the bowl-shaped opening. They then open up the surface so that the entire sinkhole area is exposed. To stop the draining of sediment into the crack in the carbonate rock, they fill the hole with bigger rocks first, then gradually fill in the seams with smaller rocks until the sinkhole is plugged.
  3. Filling it with concrete/grout from the surface: This is a combination of the prior two methods. The construction crew opens the surface all the way up so the entire hole is exposed. Then, they bring in a big concrete pourer and fill the sinkhole with concrete.

Missouri Dept of Natural Resources, Inverted cone repair sinkhole mitigation diagram

Our engineers regularly go out in the field to oversee and inspect sinkhole repairs. If you detect a sinkhole, or what might be a sinkhole, on your property, our experts strongly advise immediate actions be taken. Ignoring a sinkhole will only cause it to get larger and more dangerous as time passes, and putting topsoil over a sinkhole will only exacerbate the symptoms.

What Can You Do to Prepare for a Sinkhole?

While there’s really no way to prevent a sinkhole, you can never be too prepared! Here are three easy steps you can take to determine if you live in or around a sinkhole-prone area and what to do in the event of a surprise sinkhole:

  1. Find out whether or not you’re living in one of the sinkhole-prone states, which includes Pennsylvania, Texas, Florida, Alabama, Tennessee, and Missouri. You can do so by visiting USGS.com and searching for Bedrock Geology maps of your area. If your town is underlain by carbonate rocks, you are likely in a sink-hole prone area.
  2. Contact an engineer who’s certified to deal with sinkholes to determine if your property is at-risk.
  3. Develop a plan for what to do in the event of a sinkhole. Do you grab your family, pets, and leave immediately? Do you have a safe zone somewhere near (but not too near) your property? Do you have the appropriate emergency contact numbers in your phone? Does your car have a safety kit? These are some of the things to consider when making your emergency plan.
  4. Speak with your insurance company to see if they have sinkhole coverage, especially if you live in an area where they’re known to occur.

Although scary, sinkholes are a manageable threat if you’re informed and prepared. After all, it is possible to do something about sinkholes – if they can be detected in time.

Special thanks to Princeton Hydro Staff Engineer Stephen Duda, Geologist Marshall Thomas, and Communications Intern Rebecca Burrell for their assistance in developing this blog series.

Revisit Part One of this blog series in which we provide a detailed look at what a sinkhole is, three different types of sinkholes, and what causes them to form:

Don’t Get Sunk: Everything You Need to Know About Sinkholes (Part One)

Laura Wildman Awarded for “Bringing the Presumpscot River Back to Life”

Photo provided by the Friends of the Presumpscot River

The Friends of the Presumpscot River (The Friends) Board of Trustees awarded Laura Wildman, P.E., Princeton Hydro’s New England Regional Office Director and Water Resources and Fisheries Engineer, with its “Chief Polin Award.” The award recognizes Laura for her accomplishments and efforts in bringing life back to the Presumpscot River and rivers across the nation. The award was presented at The Friends’ Three Sisters Harvest Dinner & Annual Celebration.

The Chief Polin Award recognizes those who are making significant efforts to restore fish passage, improve water quality and bring back the natural character of the Presumpscot river.During her acceptance speech, Laura thanked The Friends for its continued dedication to restoring fish passage and revitalizing the river. “I am so proud to be part of the ‘river warriors’ team,” Laura said. “Our collective efforts to protect and restore the river have resulted in invaluable benefits to fish, aquatic organisms, wildlife, and the surrounding communities.”

The award is named after local Abanaki tribe leader Chief Polin, who led the first documented dam protest in New England during the mid-1700s, advocating for fish passage, which had been compromised by the first dams built along the river. The award recognizes those who are making significant efforts to restore fish passage, improve water quality, and bring back the natural character of the Presumpscot River. Sean Mahoney from the Conservation Law Foundation also received the Chief Polin Award during the Annual Celebration.

Map provided by The Friends of the Presumpscot RiverLocated in Cumberland County, Maine, the Presumpscot is a 25.8-mile-long river and the largest freshwater input into Casco Bay. The river has long been recognized for its vast quantity of fish. According to The Friends, when Europeans first arrived, they reported that “the entire surface of the river, for a foot deep, was all fish.”

In the 1730s, however, the construction of dams halted the passage of fish up the river. As more dams sprung up in the following centuries, the ecological vitality of the river steadily declined.

For more than 250 years, people have advocated for the unobstructed passage of fish up the Presumpscot River. Over the last 50 years, the river has undergone profound transformation due to the enactment of the Clean Water Act, the removal of a few dams, and the installation of fish passages on existing dams. Fish passage at Cumberland Mills Dam, which was completed in 2013, restored critical habitat to sea run fish such as shad, American eel, and river herring, and allowed them to move upstream again.

Saccarappa Falls dam removal in actionIn July, work began to restore a large reach of the river through Westbrook, Maine. The project involves the removal of two dam spillways from the upper Saccarappa Falls and the construction of a fishway around the lower falls. The project, which was three years in the making, was finally approved to move forward once the City of Westbrook, Sappi Fine Paper, the U.S. Fish and Wildlife Service, the Maine Department of Marine Resources, and the nonprofits, Friends of the Presumpscot River and Conservation Law Foundation, were able to reach a ground breaking settlement. The Saccarappa Falls project is a major step in restoring the river and was a focal point of the Three Sisters Harvest Dinner, celebrating decades of effort on the parts of the Friends of the Presumpscot along with their numerous project partners, including Princeton Hydro.

About the Friends of the Presumpscot River: A nonprofit organization founded in 1992, supported primarily by membership dues and small donations. Its mission is to protect and improve the water quality, indigenous fisheries, recreational opportunities and natural character of the Presumpscot River.
Learn more: presumpscotriver.org

About Princeton Hydro: Princeton Hydro has designed, permitted, and overseen the removal of dozens of small and large dams along the East Coast. To learn more about our fish passage and dam removal engineering services, visit: bit.ly/DamBarrier.

Sediment Testing on the St. Lawrence Seaway

Way up in Northern New York, the St. Lawrence River splits the state’s North Country region and Canada, historically acting as an incredibly important resource for navigation, trade, and  recreation. Along the St. Lawrence River is the St. Lawrence Seaway, a system of locks, canals, and channels in both Canada and the U.S. that allows oceangoing vessels to travel from the Atlantic Ocean all the way to the Great Lakes.

Recently, the St. Lawrence Seaway Development Corporation (SLSDC) contracted Princeton Hydro to conduct analytical and geotechnical sampling on material they plan to dredge out of the Wiley-Dondero Canal. Before dredging, sediment and soils have to be tested to ensure their content is suitable for beneficial reuse of dredged material. In August, our Geologist, Marshall Thomas and Environmental Scientist, Pat Rose, took a trip up north to conduct soil sampling and testing at two different sites within the canal near Massena and the Eisenhower Lock, which were designated by the SLSDC. The first site was at the SLSDC Marine Base, which is a tug/mooring area directly southwest of Snell Lock. The second location was directly northeast of the Eisenhower Lock, which is also used as a mooring area. Both of these sites require dredging in order to maintain mooring access for boat traffic navigating the channel.

During this two-day sampling event, our team, which also included two licensed drillers from Atlantic Testing Laboratories, used a variety of equipment to extract the necessary samples from the riverbed. Some of the sampling equipment included:

  • Vibracoring equipment: this sampling apparatus was assembled on Atlantic Testing’s pontoon boat. To set up the vibracore, a long metal casing tube was mounted on the boat more than 10 feet in the air. The steel casing was lowered through the water approximately 17-20 feet down to the mudline. From there, the vibracore was then vibrated through the sediment for an additional 4-6 feet. For this project, vibracore samples were taken at 4 feet in 10 different locations, and at 6 feet in 3 different locations.

  • A track mounted drill rig: this rig was positioned along the shoreline to allow advancement of a standard geotechnical test boring close to existing sheet piling. Advancement of the boring was done by way of a 6-inch hollow stem auger. As the auger was advanced, it resembled a giant screw getting twisted into the ground. This drilling method allows the drilling crew to collect soil samples using a split spoon sampler, which is a 2-foot long tubular sample collection device that is split down the middle. The samplers were collected by driving the split spoon into the soil using a 140 lb drop hammer.

For our team, conducting sampling work on the St. Lawrence Seaway was a new experience, given most of our projects occur further east in the Mid-Atlantic region. The most notable difference was the hardness of the sediment. Because the St. Lawrence River sediments contain poorly sorted, dense glacial till, augering into it took a little more elbow grease than typical sediments further south do.  The St. Lawrence River is situated within a geological depression that was once occupied by glaciers. As the glaciers retreated, they were eventually replaced by the Champlain Sea, which flooded the area between 13,000 and 9,500 years ago. Later on, the continent underwent a slight uplift, ultimately creating a riverlike watercourse that we now deem the St. Lawrence River. Because it was once occupied by a glacier, this region is full of glacial deposits.

For this project, our team was tasked with collecting both geotechnical and analytical samples for physical and analytical testing. Physical testing included grain size analysis, moisture content, and Atterberg limit testing. Grain size analysis helps determine the distribution of particle sizes of the sample in order to classify the material, moisture content testing determines exactly that — how moist the sediment is, and Atterberg limits help to classify the fines content of the materials as either silt or clay. Analytical testing included heavy metals, pesticides, volatile organic compounds, and dioxins.

Our scientists were responsible for logging, testing, and providing a thorough analysis of fourteen sampling locations. The samples collected from the vibracore tubes filled with sediment were logged and spilt on-shore. In order to maintain a high level of safety due to the possible presence of contaminants, all of the sampling equipment was decontaminated. This process involves washing everything with a soapy water mixture, a methanol solution, and 10% nitric acid solution.

The samples collected at each vibrocore location were split into multiple jars for both analytical and physical testing. The physical test samples were placed into air and moisture tight glass sample jars and brought to our AASHTO accredited soils laboratory in Sicklerville, New Jersey for testing. The analytical samples were placed into airtight glass sample jars with Teflon-lined caps. These samples were then placed into an ice-filled cooler and sent to Alpha Analytical Laboratories for the necessary analytical testing.

Once all the laboratory testing was completed, a summary report was developed and presented to the client. This report was made to inform the SLSDC of the physical properties of each sediment sample tested and whether contaminants exceeded threshold concentrations as outlined in the New York State Department of Environmental Conservation (NYSDEC) Technical & Operation Guidance Series (TOGS) 5.1.9. This data will ultimately be used by the SLSDC to determine the proper method for dredging of the material and how to properly dispose of the material.

Princeton Hydro provides soil, geologic, and construction materials testing to both complement its water resources and ecological restoration projects and as a stand-alone service to clients. Our state-of-the-art Soils Testing Laboratory is AASHTO-accredited to complete a full suite of soil, rock, and construction material testing for all types of projects. For more information, go here: http://bit.ly/2IwqYfG 

Don’t Get Sunk: Everything You Need to Know About Sinkholes (Part One)

Photo by Steven Reilly/New Jersey Herald

Sinkholes are a phenomenon that tend to baffle and frighten most people. How is it possible that the ground beneath our feet could just drop? How do we know if we’re nearby a sinkhole? What should we do if we see one? How are sinkholes fixed? The mystery of the unknown around sinkholes can be quite unnerving.

Have no fear, we’ve got answers to all of those questions and more! In this two-part blog series, our experts share their knowledge and provide important information about this scary occurrence. In part one, we provide a detailed look at what a sinkhole is, three different types of sinkholes, and what causes them to form. In part two, we explore how to detect sinkholes and the steps taken to repair them.

What is a Sinkhole?

Sinkholes are a common phenomenon around the world. They result from both man-made and natural causes. Marshall Thomas, a Princeton Hydro geologist, describes sinkholes as “depressions observed from the surface, caused by dissolution of carbonate rocks.” In other words, sinkholes form when the rock below the land surface gets dissolved by water that penetrates the surface and continues to move downward, further into the subsurface.

Most common in areas with “karst terrain,” or types of rocks that can easily be dissolved by groundwater, sinkholes can go undetected for years until the space underneath the surface gets too big or enough of the surface soil is washed away. Sometimes the holes are small, measuring a few feet wide and ten feet deep. Sometimes the holes are hundreds of miles wide and deep. However, all of them can be dangerous.

Sinkholes are found throughout the world. States like Pennsylvania, Texas, Florida, Alabama, Tennessee, and Missouri are at higher risk for sinkholes because they tend to have more soluble rocks like salt beds and domes, gypsum, limestone, and other carbonate rocks. People living in these states are recommended to have professionals look at any property they intend to buy to make sure it isn’t in an area above soluble rock.

Types of Sinkholes

Not all sinkholes are the scary, earth-falling-out-from-underneath-your-feet events. Some occur slowly over time and are very evident from the surface. Geologists classify sinkholes in three major types. Their formation is determined by the same geological processes, barring a few differences. Let’s dive in!

1. Dissolution Sinkholes

Illustration by USGSDissolution sinkholes start to form when limestone or dolomite is very close to the soil surface, usually covered by a thin layer of soil and permeable sand which washes away or is eroded. Rain and stormwater runoff gradually percolate through crevices in the rock, dissolving it. Consequently, a bowl-shaped depression slowly forms.

Sometimes, dissolution sinkholes become ponds when the depression gets lined with debris, which traps water inside. Dissolution sinkholes develop gradually and are normally not dangerous. However, the ones that become ponds can drain abruptly if water breaks through the protective bottom layer.

Fun fact: Most of Florida’s lakes are actually just large sinkholes that filled up with water!

2. Cover-Subsidence Sinkholes

Illustration by USGSThis type of sinkhole, which starts with the dissolution of the underlying carbonate bedrock, occurs where the covering sediment is permeable (water can pass through it) and contains sand. First, small pieces of sediment split into smaller pieces and fall into openings in the carbonate rock underneath the surface. With time, in a process called piping, the small particles settle into the open spaces. This continues, eventually forming a dip in the surface ranging from one inch to several feet in depth and diameter. Again, these aren’t the sinkholes movies are made about.

3. Cover-Collapse Sinkholes

Illustration by USGSThis type of sinkhole is the one making headlines and causing fear. In order for cover-collapse sinkholes to happen, the covering soil has to be cohesive, contain a lot of clay and the bedrock has to be carbonate. Similar to the cover-subsidence sinkholes, the cohesive soil erodes into a cavity in the bedrock. The difference with this is that the clay-filled top surface appears to remain intact from above. However, underneath, a hollowed out, upside down bowl shape forms. That hollowing gets bigger and bigger over time until eventually, the cavity reaches the ground surface, causing the sudden and dramatic collapse of the ground. Just like that, poof, we have a sinkhole that appears to be surprising and abrupt but really has been brewing for many years.

What Causes a Sinkhole?

Sinkholes can be natural or man-made. The most common causes of a sinkhole are changes in groundwater levels or a sudden increase in surface water.

Intensive rain events can increase the likelihood of a sinkhole collapse. Alternatively, drought, which  causes groundwater levels to significantly decrease, can also lead to a greater risk of collapse of the ground above. In a world with a greater variability in rainfall and drought events due to climate change, sinkholes may become a more common occurrence around the world.

Humans are also responsible for the formation of sinkholes. Activities like drilling, mining, construction, broken water or drain pipes, improperly compacted soil after excavation work, or even significantly heavy traffic (heavy weight on soft soil) can result in small to large sinkholes. Water from broken pipes can penetrate through mud and rocks and erode the ground underneath and cause sinkholes.

Most commonly, human-caused sinkholes are the result of:

  • Land-use practices like groundwater pumping, construction, and development
  • Changing of natural water-drainage patterns
  • Development of new water-diversion systems
  • Major land surface changes, causing substantial weight changes

In some cases, human-induced sinkholes occur when an already forming sinkhole is encountered during construction processes such as excavation for stormwater basins and foundations. Dissolution of bedrock generally occurs in geologic time-frames (thousands of years). In these cases, the excavation process has removed the covering soils, decreasing the distance between the top of the void and the ground surface.  

In other cases, voids in the bedrock are generated due to rock removal processes such as hammering and blasting. Hammering and blasting can generate fractures or cracks in the bedrock that soil can then erode into. A void in the bedrock may already exist, however, the process of removing the bedrock by hammering and/or blasting can speed up the meeting of the upside-down bowl and the surface that much quicker. One site where this happened has experienced over 35 sinkholes in 4 years.

Overall, it’s generally not a good idea to pump groundwater or do major excavation in areas that are prone to sinkholes. According to the USGS, over the last 15 years sinkhole damages have cost on average at least $300 million per year. Because there is no national tracking of sinkhole damage costs, this estimate is probably much lower than the actual cost. Being more mindful about the subsurface around us and our actions could help lower the average yearly cost in damages and even save lives.

Photo by Barbara Miller PennLive Patriot News

Stay tuned for Part Two of this blog series in which we explore we explore how to detect sinkholes and the steps taken to repair them! For more information about Princeton Hydro’s Geotechnical Engineering services, go here: http://bit.ly/PHGeotech

Special thanks to Princeton Hydro Staff Engineer Stephen Duda, Geologist Marshall Thomas, and Communications Intern Rebecca Burrell for their assistance in developing this blog series.

Sources:

DIY: Protecting Water Quality in Your Community

There are lots of things we can do to preserve our precious water resources. Reducing stormwater pollution in our neighborhoods is something everyone can take part in. Storm drain cleaning is a great place to start!

DIY Storm Drain Cleaning

Urbanization has fundamentally altered the way that water moves through the landscape. Stormwater that doesn’t soak into the ground runs along streets and parking lots and picks up pollutants. Much of the pollution in our nation’s waterways comes from everyday materials like fertilizers, pesticides, motor oil, and household chemicals. Rainwater washes these substances from streets, yards and driveways into storm drains.

It’s a common misconception that storm drains lead to wastewater treatment plants. In actuality, storm drains rarely lead to treatment plants and instead stormwater systems carry untreated water directly to the nearest waterway. This polluted runoff can have negative impacts on water quality, overstimulate algal growth (both toxic and non-toxic), harm aquatic species and wildlife, and cause trash and debris to enter our lakes, streams, rivers and oceans.

https://www.middlesexcentre.on.ca/Public/Stormwater

We can all do our part to improve and preserve water resources in our community and beyond!

Keeping neighborhood storm drains cleaned is one simple step. Removing debris that collects in nearby stormwater catch basins, storm drains and along curbs promotes cleaner runoff, reduces the potential for flooding, and decreases the amount of pollution and trash entering our waterways.

Follow these simple steps for DIY storm drain cleaning:

  1. Photo: Santiago Mejia, The ChronicleRake/sweep and discard debris that has collected on top of the storm grate and in curbside rain gutters. Please note: If you notice a major blockage or issue with a storm drain, contact your local municipality immediately.
  2. Use a scrub brush or toilet bowl scrubber to remove debris that may be stuck to the storm grate.
  3. Adopt a storm drain(s) and maintain a regular cleaning schedule: Make a note on your calendar each quarter to clean and clear debris from storm drains nearby your home or workplace. And, make a habit of checking your storm drains after rainstorms when clogging is most common.
  4. Host a community clean-up day that includes trash pick-up, storm drain cleaning, and disseminating information on the impacts of stormwater runoff and what we can do to help.
  5. Consider contacting your local watershed association or municipality about getting drain markers installed on storm drains throughout the community. The markers act as a continued public reminder that anything dumped into a storm drain eventually ends up in our precious waterways downstream.

Remember: Small actions lead to big achievements in protecting water quality. 

Dr. Fred Lubnow of Princeton Hydro Featured in Magazine Article on Chautauqua Lake

The U.S. is home to thousands of lakes both natural and manmade. Lakes are incredibly important features in the landscape that provide numerous beneficial services, including domestic water supply, hydro-electric power, agricultural water supply, recreation, and tourism. They also provide essential habitat for fish, wildlife and aquatic organisms.

Lakes are complex and dynamic systems, each situated in a unique landscape context. Maintaining the ecological health of a lake is no easy feat. A lot goes on behind the scenes to maintain water quality and a balanced lake ecosystem. Successful, long-term lake management requires a proactive approach that addresses the causes of its water quality problems rather than simply reacting to weed and algae growth and other symptoms of eutrophication.

Chautauqua Magazine recently published an article about the science behind the management of Chautauqua Lake, which features our Director of Aquatic Programs Dr. Fred Lubnow. We’ve included an excerpt below. Click here to view the full article and photos:

Dr. Fred Lubnow is a scientist and director of aquatic programs at Princeton Hydro, a consulting organization based in Exton, Pennsylvania, that is often called on to support lake and watershed regions that want to develop a long-term plan for lake conservation.

He says that while his firm focuses on the development of data and intelligence to inform decision making in regard to freshwater ecosystems, his work is really about coalition building.

“As a scientist and a consultant, you learn over time that you are building a coalition stakeholders and determining what we can agree on to help everyone in the community,” Lubnow said.

Ten years ago, Princeton Hydro was hired to do some stream and inlet monitoring for various stakeholders at Chautauqua Lake. More recently, they’ve been contracted to conduct third-party monitoring of the impacts of the Spring 2019 herbicide applications in the south basin of Chautauqua Lake…

Continue reading!

 

Princeton Hydro is the industry leader in lake restoration and watershed management. We have conducted diagnostic studies and have developed management and restoration plans for over 300 lakes and watersheds throughout the country. This has included work for public and private recreational lakes, major water supply reservoir, and watershed management initiatives conducted as part of USEPA and/or state funded programs. For more information about our lake management services, go here: http://bit.ly/pondlake.