6 Ways to Celebrate Lakes Appreciation Month

July is Lakes Appreciation Month – a great time of year to enjoy your community lakes and help protect them.

Lakes Appreciation Month was started by North American Lake Management Society (NALMS) to help bring attention to the countless benefits that lakes provide, to raise awareness of the many challenges facing our waterways, and to encourage people to get involved in protecting these precious resources.

“You work and play on them. You drink from them. But do you really appreciate them? Growing population, development, and invasive species stress your local lakes, ponds, and reservoirs. All life needs water; let’s not take it for granted!” – NALMS

Chemical pollutants, stormwater runoff, hydrocarbons, invasive aquatic species, and climate change are just a few of the the serious threats facing lakes and other freshwater habitats. So what can you do to to help?


We’ve put together six tips to help you celebrate Lakes Appreciation Month and get involved in protecting your favorite lakes:

1. Join the “Secchi Dip-In” contest

The “Secchi Dip-In” is an annual citizen science event where lake-goers and associations across North America use a simple Secchi disk to monitor the transparency or turbidity of their local waterway. Created and managed by NALMS, volunteers have been submitting information during the annual Dip-In since 1994. Get all the Dip-In details here.

2. Monitor and report algae blooms

With the BloomWatch App, you can help the U.S. Environmental Protection Agency understand where and when potential harmful algae blooms (HABs) occur. HABs have the potential to produce toxins that can have serious negative impacts on the health of humans, pets, and our ecosystems. Click here to learn more and download the app here. For more information on HABs, check out our recent blog.

3. Commit to keeping your lake clean

Commit to keeping your lake clean: Volunteers play a major role in maintaining the health and safety of community waterways. If you’re interested in helping to conserve and protect your water resources, you can start by cleaning up trash. Choose a waterbody in your community; determine a regular clean-up schedule; and stick to it! Cleaning your neighborhood storm drains really helps too; click here to find out how.

Photo: Santiago Mejia, The Chronicle
4. support your local lake

You can help support your favorite lake by joining or donating to a lake or watershed association. As an organized, collective group, lake associations work toward identifying and implementing strategies to protect water quality and ecological integrity. Lake associations monitor the condition of the lake, develop lake management plans, provide education about how to protect the lake, work with the government entities to improve fish habitat, and much more.

5. Get outside and enjoy (safely)

There are countless ways to enjoy and appreciate your community lakes. During Lakes Appreciation month, take photos that illustrate how you appreciate your community lakes, share them on social media using the hashtag: #LakesAppreciation, and hopefully you’ll inspire others to show their Lake Appreciation too.

6. ENTER the Lakes Appreciation Challenge

NALMS invites you to participate in its social media photo contest, titled “Show Your Lakes Appreciation Challenge.” To participate: Take a picture of yourself or someone you know enjoying or working on a lake or reservoir during July. And, upload the photo to Facebook, Instagram and/or Twitter using a descriptive caption and the #LakesAppreciation hashtag. Three winners will be determined via a raffle and announced via social media on Monday, August 3rd. Learn more.

fishing on lake

To ensure you’re staying safe while participating in Lakes Appreciation Month and all outdoor activities, please be sure to follow local regulations and the CDC’s recommended COVID-19 guidelines.

To learn more about NALMS and get more ideas on how to celebrate your local lakes, go here: https://www.nalms.org. If you’re interested in learning more about Princeton Hydro’s broad range of award-winning lake management services, go here: http://bit.ly/pondlake.

 

Mitigating Harmful Algal Blooms at Lake Hopatcong: Largest Application of Phoslock in Northeast

To prevent harmful algal blooms (HABs) in New Jersey’s largest lake, a clay-based nutrient inactivating technology called Phoslock, is being applied in Lake Hopatcong this week. This is the largest Phoslock treatment to occur in the Northeastern U.S. The Phoslock treatment, which is happening in the southern end of the lake called Landing Channel, is expected to take approximately one week depending on the weather conditions.

Over the course of the 2019 summer season, Lake Hopatcong suffered from large-scale and persistent HABs causing local and county health agencies to close off all beaches and issue advisories over large sections of the lake. These unprecedented conditions had significant negative impacts on the ecological, recreational, and economic resources of the lake and region. In order to combat HABs in this upcoming 2020 summer season, the Lake Hopatcong Commission has partnered with the Lake Hopatcong Foundation, four municipalities (Jefferson, Hopatcong, Mt. Arlington, and Roxbury), two counties (Morris and Sussex), and their environmental consultant, Princeton Hydro, to develop both short- and long-term lake management strategies.

“The negative effects of HABs in our lake last year were numerous, widespread, and in some cases devastating,” recalled Donna Macalle-Holly of Lake Hopatcong Foundation. “It is imperative for every stakeholder to pool our resources to keep it from happening again. Collaboration is the only way to protect public health, as well as the health of New Jersey’s largest lake.”

In an effort to evaluate a variety of innovative in-lake and watershed-based measures to prevent, mitigate, and/or control harmful algal blooms in Lake Hopatcong, the Lake Hopatcong Commission was awarded a $500k grant as part of New Jersey Department of Environmental Protection’s (NJDEP) new $13.5M initiative to reduce and prevent future harmful algal blooms in New Jersey. In addition to the $500k grant, the aforementioned local government and nonprofit stakeholders provided $330k in matching funds to implement and evaluate a variety of ways to address HABs in Lake Hopatcong.

“Our lake community cannot sustain another year like 2019,” said Lake Hopatcong Commission Chairman Ron Smith. “Since the news of our grant award in early March, we have been working with our partners to make sure the projects are implemented in time for the 2020 season.”

This week, the water resource engineering and natural resource management firm, Princeton Hydro—a lake management consultant to Lake Hopatcong for over two decades—is implementing the first and largest innovative measure as part of the NJDEP HABs grant-funded project. This involves treating 50 acres of the southern end of the lake with Phoslock, a clay-based product that inactivates phosphorus in both the water column and the sediments, making this critical nutrient unavailable for algal growth. The Phoslock treatment, which requires proper permitting by NJDEP, is applied as a slurry and will be distributed from a boat. The slurry will temporarily make the water appear turbid, but should disperse approximately two to six hours after each treatment.

“We are expecting the Phoslock treatment to limit the growth of algae and therefore reduce the occurrence of harmful algal blooms in the lake this summer, keeping it open for recreation and business,” said Dr. Fred Lubnow, Director of Aquatic Resources at Princeton Hydro and leading HABs expert. “If this technology is deemed successful and cost-effective in Lake Hopatcong, we could set the precedent for large-scale HABs prevention in other lakes throughout New Jersey, and even across the nation.”

Developed by the Australian national science agency CSIRO, Phoslock is frequently used to strip the water column of dissolved phosphorus, as well as to inactivate phosphorus generated from deep, anoxic sediments. Recently, at a smaller scale, it has been shown to inactivate the mobilization of phosphorus from shallow sediments where there is a mobilization of phosphorus from both chemical and biological processes.

Algae uses phosphate, the biologically available form of phosphorus, as a food source to grow. When there is an excessive amount of phosphorus in a lake, algal growth can be dense and can negatively affect water quality. This excessive plant growth, caused by eutrophication, can both cause a lack of oxygen available, leading to fish kills, as well as produce harmful algal blooms with cyanotoxins, which are harmful to humans and pets.

Photo credit: SePRO Corporation

After Phoslock is applied, it sinks through the water column, binding phosphate as it moves towards the sediment. Once settled at the bottom of the lake, it forms a very thin layer and continues to bind phosphate released from the sediment, thus controlling the release of phosphorus into the lake. One pound of phosphorus has the potential to generate up to 1,100 lbs of wet algae biomass. However, 1.1 tons of Phoslock is capable of removing 24 pounds of phosphorus — that’s over 26,000 lbs of wet algae biomass not growing in the lake for every 1.1 ton of Phoslock applied. In turn, Phoslock’s ability to suspend biologically available phosphorus is therefore a major step towards improving a lake’s water quality.

As part of the NJDEP HABs grant funding, the stakeholder group will be evaluating the relative effectiveness of this treatment strategy. Because of its shallow depth and separation from the main lake, the Landing Channel area was a good candidate for evaluation of this technology. Princeton Hydro will conduct pre- and post-treatment monitoring of the Phoslock treatment area in order to conduct an objective evaluation of the cost effectiveness of the treatment as a means of preventing the development and/or mitigation of HABs. If the study indicates that Phoslock is a cost-effective treatment, the Lake Hopatcong Commission may consider additional trials in other sections of the lake, if funding is available.

To learn more about HABs, check out our recent blog:

Identifying, Understanding and Addressing Harmful Algae Blooms

NJDEP Releases Updated Guidance for Harmful Algal Blooms

Last summer, 39 of New Jersey’s lakes were plagued with toxic algae outbreaks, also known as harmful algae blooms or HABs, causing major water quality degradation, beach closures and health advisories. In response, the NJDEP implemented a unified statewide approach to addressing HABs in freshwater recreational waters and sources of drinking water, and protecting the public from risks associated with exposure to cyanobacteria.

Last week, NJDEP announced a new component to its statewide Cyanobacterial HAB Response Strategy: a color-coded health alert index that provides precise recreational use recommendations for impacted waterbodies based on levels of cyanobacteria and/or cyanotoxins present. The index has six tiers – NONE, WATCH, ALERT, ADVISORY, WARNING, and DANGER – each providing recommendations on the specific activities that should or should not be pursued based on water monitoring results.

“Princeton Hydro is proud to be one of the contributing factors in the development of the Updated Guidance for HABs,” said said Dr. Fred Lubnow, Director of Aquatic Resources for Princeton Hydro. “We feel this updated protocol will provide the necessary and objective information for State and local organizations to make informed and rational decisions, based on sound and scientifically-based data, on how to deal with HABs in a recreational setting.

Princeton Hydro and Clean Water Consulting are the technical advisers for the New Jersey Lake Group, who have met a number of times over the last 8 to 9 months to discuss the State’s guidance on dealing with HABs.  In late 2019, on behalf of the New Jersey Lake Group, Princeton Hydro and Clean Water Consulting developed a White Paper providing recommended changes for consideration to NJDEP’s Recreational Response Strategy to HABs.

“I’m proud to say that many of the provided recommendations were integrated into NJDEP’s Updated Guidance for HABs,” explained Dr. Lubnow.

WATCH
(Suspected or confirmed HAB with potential for allergenic and irritative health effects)
This warning will be posted when HAB cell counts exceed 20,000. In this scenario, public beaches remain open, but the index instructs the public to use caution, provides information on the potential less serious health effects, and allows for more informed decision-making.

ALERT
(Confirmed HAB that requires greater observation due to increasing potential for toxin production)
This warning indicates a public bathing beach closure only and is posted when a HAB has been confirmed with cell counts between 40,000 and 80,000 and no known toxins above the public threshold. Beaches remain open (dependent upon local health authority) and monitoring for future toxin production should be increased.

ADVISORY
(Confirmed HAB with moderate risk of adverse health effects and increased potential for toxins above public health thresholds)
Signs will be posted for this warning level when cell counts exceed 80,000 or when toxin levels exceed 3 micrograms per milliliter of microcystins. Public bathing beaches will be closed, but the waterbody will remain accessible to some “secondary contact” activities, like boating.

WARNING and DANGER
(Confirmed HAB with high risk of adverse health effects due to high toxin levels)
and (Confirmed HAB with very high risk of adverse health effects due to high toxin levels)
These tiers are designed to alert the public to the presence of HABs that are producing very high levels of toxins which justify additional caution. In some instances, the entire waterbody may be closed for all public use. New Jersey has experienced approximately 12 “warning level” HAB events over the last 3 years; monitoring has never indicated a “danger level” HAB event.

According to their press release, NJDEP is committed to working with local officials to implement the index and get signage posted at lakes throughout the state as soon as possible.

In order to create the health index, NJDEP scientists carefully reviewed HABs data collected over the last three years by Lake Hopatcong Commission, Lake Hopatcong Foundation, Princeton Hydro, and other sources. The tiered warning system will enable lake communities, residents and visitors to make more individualized decisions about what risks they are willing to take and what activities they feel comfortable engaging in at the various levels of HABs.

In the coming days, the NJDEP’s Harmful Algal Bloom website will be updated to include the new health index and accompanying signage, relevant monitoring data, and other information for each of the impacted bodies of water, as well as an updated HAB Monitoring and Response Strategy. For now, you can read the full press release and additional information here: https://www.nj.gov/dep/newsrel/2020/20_0023.htm.

To learn more about HABs, check out our recent blog:

Identifying, Understanding and Addressing Harmful Algae Blooms

NJ Takes Serious Steps to Prevent Harmful Algal Blooms

Photo by: Lake Hopatcong Commission

Last year, there were more than 70 suspected and 39 confirmed Harmful Algal Blooms (HABs) in New Jersey, which is significantly higher than the previous two years. New Jersey wasn’t the only state impacted by HABs. The increase caused severe impacts on lakes throughout the country, resulting in beach closures, restricting access to lake usage, and prompting wide-ranging health advisories.

In November, New Jersey Governor Phil Murphy and officials from the New Jersey Department of Environmental Protection (NJDEP) announced a three-pronged, $13 million initiative to reduce and prevent future HABs in the state. As part of the initiative, NJDEP hosted its first regional HABs Summit with the goal of prevention by improving communication throughout lake communities and sharing information ahead of the warmer months when HABs begin to appear.

The summit, which was held on January 28, 2020 at NJDEP’s Pequest Trout Hatchery and Natural Resource Education Center in Warren County included a Q&A panel discussion, information resource tables for one-on-one discussions, and presentations from a variety of NJDEP representatives and environmental experts. Princeton Hydro’s  Director of Aquatics and regional HABs expert Dr. Fred Lubnow’s presentation focused on how to properly and effectively manage HABs.

According to Dr. Lubnow, “Managing loads of phosphorous in watersheds is even more important as the East Coast becomes increasingly warmer and wetter thanks to climate change. Climate change will likely need to be dealt with on a national and international scale. But local communities, groups, and individuals can have a real impact in reducing phosphorous levels in local waters.”

In a recent press release from Governor Murphy’s office, the NJDEP Chief of Staff Shawn LaTourette said, “We will reduce HABs by working closely with our local partners on prevention and treatment techniques, while relying on the best available science to clearly communicate risk to the public. Our new HABs initiative will enhance the Department’s ability to evaluate statewide strategies and increase the capacity of lake communities to reduce future blooms.”

New Jersey’s new HABs initiative is comprised of three main components:

Providing Funding:

More than $13 million in funding will be available to local communities to assist in preventing HABs, including:

  • $2.5 million will be available as matching funds for lakes and HABs management grants, including treatment and prevention demonstration projects.

  • Up to $1 million in Watershed Grant funding will be made available for planning and projects that reduce the nonpoint source pollution, including nutrients, that contribute to HABs in surface waters of the State.

  • $10 million in principal forgiveness grants will be offered through the Clean Water State Revolving Fund for half of the cost, capped at $2 million, of sewer and stormwater upgrades to reduce the flow of nutrients to affected waterbodies.

Increasing Expertise & Implementing Prevention Tactics:

Per the Governor’s press release, “the second element of the initiative is to build upon the state’s scientific expertise and enhance its capacity to respond to HAB events. This includes establishing a team of experts from across various sectors to evaluate the state’s strategies to prevent HABs and pursuing additional monitoring, testing and data management capacity.”

Connecting with Communities:

The third component is focused on increasing NJDEP’s ability to communicate with affected communities. The regional HABs Summit held on January 28 was one of two Summits that will occur in early 2020 (the date of the next Summit has not yet been announced). NJDEP has also developed new web tools to provide HABs education, offer a forum to discuss and report potential HAB sightings, and better communicate HAB incidents.

To learn more about New Jersey’s new HABs Initiative, click here. To learn more about HABs, check out our recent blog:

Identifying, Understanding and Addressing Harmful Algae Blooms

Regional Watershed Planning: A Critical Strategy to Prevent HABs

Photo by @likethedeaadsea, submitted during our 2019 #LAKESAPPRECIATION Instagram Photo Contest.

Harmful Algae Blooms (HABs) were in the spotlight last summer due to the severe impacts they had on lakes throughout the country. Nation-wide, HABs caused beach closures, restricted lake usage, and led to wide-ranging health advisories. There were 39 confirmed harmful algal bloom (HAB) outbreaks in New Jersey alone.

As a reminder, HABs are rapid, large overgrowths of cyanobacteria. These microorganisms are a natural part of aquatic ecosystems, but, under the right conditions (primarily heavy rains, followed by hot, sunny days), these organisms can rapidly increase to form cyanobacteria blooms, also known as HABs. HABs can cause significant water quality issues; produce toxins that are incredibly harmful (even deadly) to humans, animals, and aquatic organisms; and negatively impact economic health, especially for communities dependent on the income of jobs and tourism generated through their local lakes.

“A property’s value near an infested lake can drop by up to $85,000, and waterside communities can lose millions of dollars in revenue from tourism, boating, fishing and other sectors,” reports Princeton Hydro President Geoff Goll, P.E.

Generally, the health of a private lake is funded and managed in isolation by the governing private lake association group. But, in order to mitigate HABs and protect the overall health of our local waterbodies, it’s important that we look beyond just the lake itself. Implementing regional/watershed-based planning is a critical step in preventing the spread of HABs and maintaining the overall health of our natural resources.

At the end of 2019, the Borough of Ringwood became the first municipality in New Jersey to take a regional approach to private lake management through a public-private partnership with four lake associations.

The Borough of Ringwood is situated in the heart of the New Jersey Highlands, is home to several public and private lakes, and provides drinking water to millions of New Jersey residents. In order to take an active role in the management of these natural resources, Ringwood hired Princeton Hydro, a leader in ecological and engineering consulting, to design a municipal-wide holistic watershed management plan that identifies and prioritizes watershed management techniques and measures that are best suited for immediate and long-term implementation.

Map showing the four private lakes involved in the Borough of Ringwood's regional holistic watershed management plan.

Funding for Ringwood’s Watershed-based Assessment is being provided by the New Jersey Highlands Council through a grant reimbursement to the Borough of Ringwood. The Highlands Council offers grant funding and assistance to support the development and implementation of a wide range of planning initiatives. Examples of the types of efforts that can be funded for municipalities and counties include:

  • Land Use and Development projects like sustainable economic development planning and green building and environmental sustainability planning;
  • Infrastructure projects like stormwater management and water use/conservation management;
  • Resource Management projects like habitat conservation, lake management and water quality monitoring; and
  • Recreation and Preservation projects like land preservation and stewardship, farmland preservation and agriculture retention, and historic preservation.

Chris Mikolajczyk, CLM, Princeton Hydro’s Aquatics Senior Project Manager and the Ringwood project’s lead designer, presented with Keri Green of the NJ Highlands Council, at a recent New Jersey Coalition of Lake Associations meeting. The duo showcased Ringwood’s unique approach, spread the word about available funding through the NJ Highlands Council, and encourage other municipalities to follow Ringwood’s lead in taking a regional approach to lake and watershed management.

Mikolajczyk said, “This regional approach to lake and watershed management is a no-brainer from a scientific, technical, and community point of view. Historically, however, municipal governments and private lake associations have rarely partnered to take such an approach. The hope is that the Borough of Ringwood efforts, funded by the New Jersey Highlands Council, will set a precedent for this logical watershed management strategy and open the door for future public-private partnerships.”

This integrated approach to watershed and lake management is an important preventative measure to improve water quality for millions of people and reduce potential future incidents of aquatic invasive species and harmful algal blooms throughout the region.

To learn more about NJ Highlands Council and available grant funding, go here.
To download a complete copy of the presentations given by Mikolajczyk and Green at the recent NJCOLA meeting, go here.
To learn more about Princeton Hydro’s pond, lake and watershed management services, go here.

 

UPDATED: Winter Events Spotlight: Webinars, Courses, & Conferences

WE HAVE UPDATED THE BELOW CONTENT TO REFLECT EVENT CHANGES AND CANCELLATIONS DUE TO COVID-19. 

Throughout the first quarter of 2020, Princeton Hydro is participating in a variety of events focused on conserving, restoring, and protecting our precious water resources. Here’s a snapshot of what’s to come:

January 21: American Sustainable Business Council Webinar

As part of ASBC’s “Clean Water is Good for Business” campaign, the organization is hosting this online training session for businesses to help elevate their voice on clean water issues. Titled “Making the Business Case on Clean Water Issues to the Media,” this webinar will help you find and approach the right journalists, make the most compelling arguments for your policy agenda, enhance your credibility and confidence, and much more! The webinar is lead by Bob Keener, Deputy Director of Public Relations at American Sustainable Business Council; Dana Patterson, Marketing & Communications Manager at Princeton Hydro; Rita Yelda, Outreach & Communications Manager at Coalition for the Delaware River Watershed; and Colton Fagundes, Policy Associate at American Sustainable Business Council.

Learn more & Register

 

January 28: NJDEP’s Harmful Algal Blooms Summit

The New Jersey Department of Environmental Protection is hosting a Harmful Algal Blooms (HABs) Summit. The summit is part of Governor Phil Murphy and the NJDEP’s three-pronged, $13 million initiative to reduce and prevent future HABs in New Jersey. This is the first of two regional summits taking place in early 2020 with the goal of improving communication throughout lake communities and sharing information ahead of the warmer months when HABs begin to appear. The summit includes a presentation from Princeton Hydro’s Dr. Fred Lubnow who will discuss the prevention, management and treatment of HABs. 

Learn more about NJDEP’s HABs Initiative

 

January 29-30: 2020 Delaware Wetlands Conference

Wetland enthusiasts, experts and students from the Mid-Atlantic region will gather together in Wilmington, Delaware to attend the 9th biennial 2020 Delaware Wetlands Conference. Participants will share the latest in wetland research, innovations to outreach and education, and the progress of conservation programs. Senior Ecologist Michael Rehman of Princeton Hydro, a proud sponsor of the event, is giving a presentation on urban wetland restoration. Swing by our exhibitor booth to say hello!

Learn more & Register

 

JANUARY 2019 – MAY 2020: TEMPLE UNIVERSITY WETLAND ECOLOGY COURSE

Moved to Remote Instruction for the Rest of the Semester

Our Vice President Mark Gallagher and Founding Principal and Consultant Dr. Steve Souza are teaching an applied wetland ecology graduate course at Temple University. The 17-week Spring semester course, which includes weekly lectures as well as field trips, will provide students with an opportunity to study real-world examples of wetland and riparian restoration and the integration of wetland ecology and restoration design within the context of green infrastructure. Students will gain an increased understanding of the ecological functions of wetland and riparian ecosystems; be introduced to the principles of applied ecology as related to wetland and riparian ecosystem restoration; get hands-on experience with how to use green infrastructure techniques in urban and suburban settings to control and abate stormwater impacts; and learn about state and federal regulations.

LEARN MORE

 

JANUARY 2019 – MAY 2019: DELAWARE VALLEY UNIVERSITY WATERSHED MANAGEMENT COURSE

Moved to Remote Instruction for the Rest of the Semester

Dr. Fred Lubnow, Princeton Hydro’s Director of Aquatic Programs, is teaching a “Watershed Management” course at Delaware Valley University. The course provides participants with the skills needed to understand the concepts and terminology of hydrologic processes and watersheds, including evapotranspiration, soil water, infiltration, runoff, and stream flow. Through hands-on laboratory exercises and engaging lectures, students will also develop skills in environmental awareness, ecological awareness, and land stewardship, which will help them understand the key processes involved in managing watershed resources sustainably.

LEARN MORE

 

March 2: SAME Philadelphia Post Small Business Conference

Society for American Military Engineers (SAME) gives leaders from the A/E/C, environmental, and facility management industries the opportunity to come together with federal agencies in order to showcase best practices and highlight future opportunities for small businesses to work in the federal market. Princeton Hydro’s Chief Operating Officer and Director of Geosciences Engineering Kevin Yezdimer, P.E. and Marketing Coordinator Kelsey Mattison are excited to participate in and exhibit at this year’s SAME SBC Philadelphia Post Conference. The program consists of networking events, small business exhibits, a variety of speakers and much more.

LEARN MORE & REGISTER

 

March 4-5: Pennsylvania Lake Management Society (PALMS) Conference

PALMS is hosting its 30th annual conference during which lake professionals, students, recreation enthusiasts, lakeside residents and community members will join together to explore a variety of topics related to managing lakes and reservoirs. This year’s conference themed, “Reflecting on our Past While Looking to the Future,” offers a collection of professional presentations, workshops and panel discussions. Dr. Fred Lubnow and Michael Hartshorne of Princeton Hydro are both giving presentations on harmful algae blooms. View the full conference agenda here, and be sure to visit the Princeton Hydro exhibitor booth to chat about the latest advancements in pond, lake and watershed management.

Learn more & Register

 

March 20: 24th Annual NJ Land Conservation Rally

Cancelled. 

The New Jersey Conservation Foundation is hosting its 24th Annual NJ Land Conservation Rally, a one-day educational conference focused on conserving New Jersey’s open space and farmland. This year’s conference, which Princeton Hydro is a proud sponsor of, includes training workshops, roundtable discussions, exhibitors, and a variety of networking opportunities. Click here to view the full conference agenda, including presentor bios and presentation abstracts. We hope you’ll stop by the Princeton Hydro exhibitor booth to say hello!

Learn more & Register

 

March 27: University of Pennsylvania’s 14th Annual Graduate Student Research Conference

Cancelled. Organization has requested that participants save March 26, 2021 as a possible reschedule date.

Penn’s Master of Environmental Studies and Master of Science in Applied Geosciences programs will host the 14th Annual Graduate Student Research Conference. This event, a celebration of academic excellence for Penn’s professional master’s programs, will kick off with a keynote address from Kathy Klein, Executive Director of the Partnership for the Delaware Estuary.  40+ graduating students from the Masters of Environmental Studies and Master of Science in Applied Geoscience programs will present their research posters during the event. Participants will also have the opportunity to  network with local organizations and Penn collaborators, including Princeton Hydro.

Learn more & RSVP

 

April 22: Stroud Water Research Center’s Lecture Series Event

Status Unknown. Stroud has cancelled/postponed all events through April 19, 2020, and the Campus is currently CLOSED to visitors. Additional postponements and/or cancellations may be announced at a later date.

Stroud Water Research Center is dedicated to understanding the ecology of streams, rivers, and watersheds. Its freshwater research, environmental education, watershed restoration, and stewardship programs enable businesses, policymakers, landowners, and individuals to make informed decisions that affect water quality and availability around the world. As part of Stroud’s environmental education mission, it is hosting a lecture series. Princeton Hydro is excited to sponsor the Earth Day celebration and premiere of Flow of Life, on April 22nd. Stay tuned for more info on this event!

Learn more about Stroud

STAY TUNED FOR MORE EVENT SPOTLIGHTS!

 

 

 

Identifying, Understanding and Addressing Harmful Algae Blooms

Harmful Algae Bloom Visible in Owasco Lake. Photo by: Tim Schneider

Harmful Algae Blooms (HABs) were in the spotlight this summer due to the severe impacts they had on lakes throughout the country. The nation-wide HABs outbreak caused beach closures, restricted access to lake usage, and wide-ranging health advisories.

What exactly are HABs? Why were they so severe this summer? Will this trend continue? Can anything be done to prevent the occurrence or mitigate the impacts?

In this blog, we provide answers to all of those questions, exploring what HABs are, why they occur, why they were particularly prevalent this summer, and what we can do to combat them.

What are HABs?

Simply put, HABs are rapid, large overgrowths of cyanobacteria. Cyanobacteria, also known as blue-green algae, aren’t actually algae, they are prokaryotes, single-celled aquatic organisms that are closely related to bacteria and can photosynthesize like algae. These microorganisms are a natural part of aquatic ecosystems, but, under the right conditions (primarily heavy rains, followed by hot, sunny days), these organisms can rapidly increase to form cyanobacteria blooms, also known as HABs.

HABs can cause significant water quality issues in lakes and ponds, often forming a visible and sometimes odorous scum on the surface of the water. They can produce toxins that are incredibly harmful (even deadly) to humans, animals, and aquatic organisms. HABs also negatively impact economic health, especially for communities dependent on the income of jobs and tourism generated through their local lakes and waterways.

What causes HABs?

HABs are caused by a complex set of conditions, and many questions remain about exactly why they occur and how to predict their timing, duration, and toxicity. Primarily, HABs are caused by warmer temperatures and stormwater run-off pollutants, including fertilizers with phosphates.

NY Times article, featuring Princeton Hydro, looks at how climate change affects lakes nationwide, using NJ as an example. Photo by: Rick Loomis, NY Times.HABs are induced by an overabundance of nutrients in the water. The two most common nutrients are fixed nitrogen (nitrates and ammonia) and phosphorus. Discharges from wastewater treatment plants, runoff from agricultural operations, excessive fertilizer use in urban/suburban areas, and stormwater runoff can carry nitrogen and phosphorus into waterways and promote the growth of cyanobacteria.

Climate change is also a factor in HAB outbreaks, which typically occur when there are heavy rains followed by high temperatures and sunshine. Climate change is leading to more frequent, more intense rainstorms that drive run-off pollutants into waterways, coupled with more hot days to warm the water. These are the ideal conditions for HABs, which in recent years have appeared in more places, earlier in the summer.

With climate change and increasing nutrient pollution causing HABs to occur more often and in locations not previously affected, it’s important for us to learn as much as we can about HABs so that we can reduce their harmful effects.

What Can I Do to Prevent HABs?

Signs on the closed beach at Hopatcong State Park warn residents of the Harmful Algae Bloom at Lake Hopatcong on July 2019, in Landing, NJ. (Photo by: Danielle Parhizkaran of NorthJersey.comThe number one thing individuals can do to protect their waterbodies and prevent HABs is to reduce phosphorous use and reduce nutrient loads to waters.

According to Dr. Fred Lubnow, Director of Aquatic Programs for Princeton Hydro, “Managing loads of phosphorous in watersheds is even more important as the East Coast becomes increasingly warmer and wetter thanks to climate change. Climate change will likely need to be dealt with on a national and international scale. But local communities, groups, and individuals can have a real impact in reducing phosphorous levels in local waters.”

Here are a few steps you can take to improve water quality in your community lakes:

Controlling stormwater runoff is another critical factor in improving water quality and reducing HABs. There are a number of low-cost green infrastructure techniques that can be implemented on an individual and community-wide scale. You can read more about green infrastructure stormwater management techniques in our recent blog.

In a recent Op/Ed published on NJ.com, Princeton Hydro President Geoff Goll lists four things that residents, businesses, and local governments should do to prevent another HABs outbreak next summer:

  1. Improve aging “gray” infrastructure
  2. Invest in “green” stormwater infrastructure
  3. Implement regional/watershed-based planning
  4. Pass the Water Quality Protection and Jobs Creation Act

“By making the necessary investments, we can simultaneously create jobs, reduce flood impacts, improve fisheries, maintain or increase lakefront property values, improve water quality and preserve our water-based tourism. The time to act is literally now,” said Geoff. Go here, to read the full article.

HABs Management in Action through Floating Wetland Islands:

Nitrogen and phosphorus are utilized by plants, which means they uptake these nutrients to sustain growth. We see this naturally occurring in wetland ecosystems where wetlands act as a natural water filtration system and can actually thrive from nutrients flowing in from external sources.

This process is replicated in floating wetland islands (FWIs), where you typically have a constructed floating mat with vegetation planted directly into the material. The plants then grow on the island, rooting through the floating mat.

This illustration, created by Staff Scientist Ivy Babson, conveys the functionality of a Floating Wetland Island

This illustration, created by Staff Scientist Ivy Babson, conveys the functionality of a Floating Wetland Island

Not only do FWIs assimilate and remove excess nitrogen and phosphorus out of the water, they also provide habitat for fish and other aquatic organisms; help mitigate wave and wind erosion impacts; provide an aesthetic element; and can be part of a holistic lake/pond management strategy. Because of this, FWIs are being utilized to improve water quality and control HABs in lakes and ponds throughout the country. Princeton Hydro has designed and implemented numerous FWIs in waterbodies large and small. Go here to learn how they’re being used in Harveys Lake.

 

Recognizing and monitoring the changes that are taking place in our local waterways brings the problems of climate change, stormwater pollution and the resulting water quality issues closer to home, which can help raise awareness, inspire environmentally-minded action and promote positive, noticeable change.

If you spot what you believe to be a harmful algae bloom in your community lake, contact your local lake association right away. They, along with their lake management team, can assess the situation and determine what further actions need to be taken.

For more information about harmful algae blooms and water quality management, go here: http://bit.ly/pondlake.

Special thanks to Princeton Hydro Staff Scientist Ivy Babson for her contributions to this blog.

BOROUGH OF RINGWOOD INITIATES FIRST-IN-STATE REGIONAL APPROACH TO LAKE MANAGEMENT THROUGH PUBLIC-PRIVATE PARTNERSHIP

NorthJersey.com File Photo
The Borough of Ringwood initiates a unique public-private partnership
with four community lake associations to
holistically manage watershed health related to private lakes

Providing drinking water to millions of New Jersey residents, the Borough of Ringwood is situated in the heart of the New Jersey Highlands and is home to several public and private lakes that sit within the Ramapo Mountains. In order to take an active role in the management of these natural resources within multiple watersheds, the Borough of Ringwood will be the first municipality in the state of New Jersey to take a regional approach to private lake management through a public-private partnership (PPP) with four lake associations.

The four private sets of lakes targeted in the plan— Cupsaw, Erskine, Skyline, and Riconda —were created by the Ringwood Company in the 1920s and 30s to promote the municipality as a hunting and fishing retreat and a summer resort. They currently provide private beach clubs and recreational opportunities for surrounding homeowners who can opt to join as members.

Map Showing the Four Private Lakes in the PPP holistic watershed management plan

Generally, the health of a private lake is funded and managed in isolation by the governing private lake association group. Ringwood Borough Manager Scott Heck’s concept was to design and implement a municipal-wide holistic watershed management plan to use as a tool to identify capital priorities to enhance water quality throughout the community. Mr. Heck hired Princeton Hydro, a leader in ecological and engineering consulting to design this innovative project.

Cupsaw Lake “This regional approach to lake and watershed management is a no-brainer from a scientific, technical, and community point of view. Historically, however, municipal governments and private lake associations have rarely partnered to take such an approach,” said Princeton Hydro’s Senior Project Manager, Christopher Mikolajczyk, who is a Certified Lake Manager and lead designer for this initiative. “We’re thrilled to work with the Borough of Ringwood and the New Jersey Highlands Council to set a precedent for this logical watershed management strategy, which opens the door for future public-private partnerships.”

As part of this project, a Watershed-based Assessment will be completed. The following objectives will be met:

  1. Identification, quantification, and prioritization of watershed-based factors which may cause eutrophication;
  2. Identification of watershed management measures needed to address general causes of water quality impairments;
  3. Identification of the relative cost of the recommended general watershed management measures;
  4. The generation of a schedule, based on priority, for the implementation of the recommended watershed management measures; and
  5. A general assessment report will be authored at the conclusion of the study.

Skyline Lake in the FallFunding for the Watershed-based Assessment for the Lakes of the Borough of Ringwood is being provided by the New Jersey Highlands Council through a grant reimbursement to the Borough of Ringwood. As part of the PPP , the Borough of Ringwood will review and where feasible implement any suggested actions surrounding the lakes. The final report, provided to the Borough by Princeton Hydro, will identify and prioritize watershed management techniques and measures that are best suited for immediate and long-term implementation, as well as provide cost projections for implementation in both the short-term and long-term.

This integrated approach to watershed and lake management is an important preventative measure to improve water quality for millions of people and reduce potential future incidents of aquatic invasive species and harmful algal blooms throughout the region.

For more information about the PPP, check out today’s NorthJersey.com news story. To learn more about Princeton Hydro’s lake and pond management services, go here: http://bit.ly/pondlake.

Washington Post’s Climate Story Features Princeton Hydro

Photo credit: The Washington Post

Did you know that New Jersey is one of the fastest-warming states in the nation? Not only that, did you know the average temperature increase in the state is double the average of the rest of the Lower 48 states?

In a recent article, the Washington Post uncovers quite startling findings from analysis of more than a century of National Oceanic and Atmospheric Administration temperature data across the Lower 48 states and 3,107 counties. The article takes a specific look at the impacts climate change has had on Lake Hopatcong.

Princeton Hydro has been working with Lake Hopatcong for 30+ years, restoring the lake, managing the watershed, reducing pollutant loading, and addressing invasive aquatic plants and nuisance algae bloomsLake Hopatcong has one of the longest, continuous, long-term ecological databases in New Jersey; 30+ years of consistently collected water quality data.

Dr. Fred Lubnow, Director of Aquatic Programs, and Katie Walston, Senior Scientist, are featured in the Washington Post article. Here’s an excerpt:

On a cool but sunny day in May, Fred Lubnow, director of aquatic programs at Princeton Hydro, and Katie Walston, a senior scientist there, pulled up their anchor in Lake Hopatcong to find it covered with aquatic weeds. The culprit? Fertilizer runoff combined with winters too warm to kill them off.

“The plants start growing earlier and linger around longer, as well,” Lubnow said. The thick ice blocked sunlight from nurturing the weeds. But “in some of these shallow areas, as early as February, we’re looking through the ice seeing the plants growing.”

By summer, the weeds become a nuisance, forcing the state government to “harvest” them with large paddles and toss them onto a conveyor belt, then onto barges. Some years, funding has been hard to get, delaying harvesting and angering homeowners.

“If this area is not harvested, you can’t get a boat through it,” Lubnow says. Swimming isn’t possible, either. Fishing becomes difficult.

Get the full Washington Post story here!

If you’d like to read more about climate change, check out our recent blog:

Four Ways Climate Change Can Affect Your Lake

 

 

 

Managing Urban Stormwater Runoff and Revitalizing Natural Habitat at Harveys Lake

Measuring 630+ acres, Harveys Lake, located in Luzerne County, Pennsylvania, just northeast of Wilkes-Barre, is the largest natural lake (by volume) within the Commonwealth of Pennsylvania, and is one of the most heavily used lakes in the area. It is classified as a high quality – cold water fishery habitat (HQ-CWF) and is designated for protection under the classification.

Since 2002, The Borough of Harveys Lake and the Harveys Lake Environmental Advisory Council  has worked with Princeton Hydro on a variety of lake management efforts focused around maintaining high water quality conditions, strengthening stream banks and shorelines, and managing stormwater runoff.

Successful, sustainable lake management requires identifying and correcting the cause of eutrophication as opposed to simply reacting to the symptoms of eutrophication (algae and weed growth). As such, we collect and analyze data to identify the problem sources and use these scientific findings to develop a customized management plan that includes a combination of biological, mechanical, and source control solutions. Here are some examples of the lake management strategies we’ve utilized for Harveys Lake:

 

Floating Wetland Islands

Floating Wetland Islands (FWIs) are an effective alternative to large, watershed-based natural wetlands. Often described as self-sustaining, FWIs provide numerous ecological benefits. They assimilate and remove excess nutrients, like nitrate and phosphorous, that could fuel algae growth; provide habitat for fish and other aquatic organisms; help mitigate wave and wind erosion impacts; and provide an aesthetic element. FWIs are also highly adaptable and can be sized, configured, and planted to fit the needs of nearly any lake, pond, or reservoir.

Five floating wetland islands were installed in Harveys Lake to assimilate and reduce nutrients already in the lake. The islands were placed in areas with high concentrations of nutrients, placed 50 feet from the shoreline and tethered in place with steel cables and anchored. A 250-square-foot FWI is estimated to remove up to 10 pounds of nutrients per year, which is significant when it comes to algae.

Princeton Hydro worked with the Harveys Lake Environmental Advisory Council and the Borough of Harveys Lake to obtain funding for the FWIs through the Pennsylvania Department of Environmental Protection (PADEP).

 

Streambank & Shoreline Stabilization

Harveys Creek

The shoreline habitat of Harveys Lake is minimal and unusual in that a paved road encompasses the lake along the shore with most of the homes and cottages located across the roadway, opposite the lake. In addition to the lake being located in a highly populated area, the limited shoreline area adds to the challenges created by urban stormwater runoff.

Runoff from urban lands and erosion of streambanks and shorelines delivers nutrients and sediment to Harveys Lake. High nutrient levels in the lake contribute to algal blooms and other water quality issues. In order to address these challenges, the project team implemented a number of small-scale streambank and inlet stabilization projects with big impacts.

The work included the stabilization of the streambank downstream for Harveys Lake dam and along Harveys Creek, the design and installation of a riparian buffer immediately along the lake’s shoreline, and selective dredging to remove sediment build up in critical areas throughout the watershed.

 

Invasive Species Management

Hydrilla (Hydrilla verticillata), an aggressively growing aquatic plant, took root in the lake in 2014 and quickly infected 250 acres of the lake in a matter of three years. If left untreated, hydrilla will grow to the water’s surface and create a thick green mat, which prevents sunlight from reaching native plants, fish and other organisms below. The lack of sunlight chokes out all aquatic life.

In order to prevent hydrilla from spreading any further, Princeton Hydro and SePRO conducted an emergency treatment of the impacted area utilizing the systemic herbicide Sonar® (Fluridone), a clay-based herbicide. SonarOne, manufactured by SePRO, blocks hydrilla’s ability to produce chloroplasts, which in turn halts the photosynthetic process. The low-concentration herbicide does not harm fish, wildlife or people using the lake. Surveys conducted after the treatment showed it was working – the hydrilla had turned white and was dying off. Additional Sonar treatments followed and efforts to eradicate hydrilla in the lake continue.

Dr. Fred Lubnow, our Director of Aquatic Programs, estimates complete eradication of the aquatic plant could take around five years. Everyone can do their part in preventing the spread of this and other invasive species. Boaters and lake users must be vigilant and remove all vegetation from the bottom of watercrafts and trailers.

 

Stormwater Best Management Practices (BMPs)

In 2009, Princeton Hydro developed a stormwater implementation plan (SIP) for Harveys Lake. The goal of the stormwater/watershed-based efforts was to reduce the lake’s existing annual total phosphorus load to be in full compliance with the established Total Maximum Daily Load (TMDL). This TMDL is related to watershed-based pollutant loads from total phosphorus (TP) and total suspended solids (TSS), which can contribute to algal blooms.

A number of structural urban runoff projects were implemented throughout the watershed. This includes the design and construction of two natural stream channel projects restoring 500 linear feet of tributaries and reducing the sediment and nutrient loads entering the lake. A series of 38 urban runoff BMPs, including nutrient separating devices and roadside infiltration, were installed in areas immediately adjacent to the lake to further reduce the loads of nutrients and other pollutants reaching the lake.

The photos below show a stormwater project that was completed in the Hemlock Gardens Section of the Watershed. Hemlock Gardens is a 28-acre section of land located in the southeastern portion of the watershed. It contains approximately 26 homes, has very steep slopes, unpaved dirt roads, and previously had no stormwater infrastructure in place.

Two structural stormwater BMPs were installed:

  • A nutrient separating baffle box, which utilizes a three-chamber basin with screens to collect leaf litter, grass clippings and trash
  • A water polishing unit that provides a platform for secondary runoff treatment

In 1994, Harveys Lake was identified as “impaired” by PADEP due to large algal blooms. In 2014, Harveys Lake was removed from the list of impaired waters. Project partners attribute the recovery of this lake to the stream restoration, urban runoff BMP implementation, and the use of in-lake nutrient reduction strategies.

The Harveys Lake Watershed Protection Plan Implementation Project proved that despite the lake being located in an urbanized watershed, it is possible to implement cost-effective green infrastructure and stormwater retrofit solutions capable of significantly decreasing pollutant loading to the lake.

To learn more about our lake and pond management services or schedule a consultation, visit: http://bit.ly/pondlake.