Employee Spotlight: Meet Our New Team Members

Join us in welcoming ten new team members! We’ve hired four full-time staff and six part-time staff and interns spread throughout our Ringoes, Sicklerville, and Glastonbury offices.

Meet the new team members:

MARCIE ROBINSON, P.E., Senior Project Manager

With nearly two decades of experience in both the private and public sectors, Marcie has extensive knowledge of both facets of the civil engineering world. Her area of expertise includes water resource engineering and more specifically stormwater management, having designed multiple stormwater facilities utilizing best management practices. Marcie has worked on all aspects of land development projects including residential, industrial, commercial, and educational site plans and subdivisions; construction administration; and municipal engineering. She has prepared capital improvement projects for local municipalities and reviewed land development projects for conformance with local ordinances and the NJDEP stormwater regulations.

Outside of work, Marcie enjoys camping, gardening, raising money for various charities, and spending time with her husband, son, and beagle. She is eager to utilize her technical background, problem solving skills, and motivation to contribute to new challenging projects.

SAMARA MCAULIFFE, Executive Advisor & Employee Relations Manager

With over ten years of human resources and management experience, Samara has worked as a business partner and advisor in various sectors, from finance to retail. Her hands-on experience includes researching and resolution of complex human resources related issues, recruitment process management, HRIS implementation, representation at unemployment hearings, creation of EEOC position statements, leading and administering open enrollment initiatives, as well as management coaching and training.

Outside of work, Samara is an active member of her community, volunteering for various causes dear to her heart. She enjoys spending time with her son and daughter and makes every effort to be outside as much as possible, preferably hiking or kayaking.

Marissa Ciocco, Staff Engineer

After spending the last year interning for our Geosciences Engineering Practice Area, we’re thrilled to have Marissa join our team full-time. She is a recent graduate of Rowan University holding a B.S. in Civil and Environmental Engineering with a Bantivoglio Honors Concentration. She was a member of the Orientation Staff for two years and is a member of the Student Alumni Association. She participated in the CREATE’s Fellowship program at Rowan University, and currently helps out at a local french bakery and tea room on the weekends. Her Junior Clinic class experience includes a green roof feasibility study and testing the effects of water quality on masonry mortar. In the future, Marissa hopes to work towards creating a greener and safer environment.

Marissa enjoys playing field hockey, cooking, knitting, car rides, and spending time with family and friends. She also enjoys watching home improvement shows, listening to country music, and mumbling phrases in Italian.

Ivy Babson, Staff Scientist

Ivy, who previously interned with us last summer, recently earned her B.S. in Environmental Science with a concentration in Ecological Design, and minor in Geospatial Technologies from the University of Vermont, and has now joined our team full time. During her studies, she was a member of UVM’s Humanitarian Mapping Club and has “virtually” responded to earthquake and hurricane relief efforts in Puerto Rico, Mexico, Texas, and Afghanistan via interactive spatial imagery programs. Ivy has also been the Art Editor of UVM’s alternative newspaper, drawing attention to environmental and social issues through articles and cartoons. Ivy worked closely through her school with the Vermont Chapter of The Nature Conservancy to create a restoration plan and GIS map of an altered wetland near Lake Champlain that would hopefully help regain the ecosystem services lost from agricultural development. In the future, she hopes to implement ecological design in impacted ecosystems and in urban areas to help rehabilitate and restore damaged resources.

Ivy enjoys drawing, listening to her favorite 90s alt rock bands, road tripping, and watching re-runs of It’s Always Sunny in Philadelphia.

eric Libis, Aquatics specialist

Eric Libis is passionate of the outdoors. As a resident of Alaska, Eric has extensive hands on experience with nature in all its forms. Previously, he’s held a variety of positions including small engine mechanic, project manager, and served in the U.S. Army. New to Princeton Hydro, he hopes to expand his conservation skills and knowledge while providing his experience to the field operations team.

Fond of all things outdoors, Eric can (or cannot) be found, hiking in the back-country, mountaineering, rock mineral and fossil collecting, camping (both primitive and modern), boating, fishing, trail-building, and educating the leaders of tomorrow of the importance in preserving nature for everyone to enjoy.

Becca Burrell, Communications Intern

Becca is a senior at the University of Pittsburgh, working to attain a degree in Media and Professional Communications on the Corporate and Community Relations track, along with a certificate in Public and Professional Writing. Through her previous experience and classwork, Rebecca has learned how to engage with others through social media, writing, and marketing. At Pitt, Rebecca is a member of two honor societies, plays intramural field hockey, and is on the events committee for the Imagination Project, a group that dresses as famous characters in kids’ movies/TV shows and visits local children’s hospitals and other rec centers. She is also a student worker in the English Department. At Princeton Hydro, she is excited to promote and further the company’s goals through the use of thoughtful communication strategies.

During her free time, you can find Becca hanging out with her family, friends, and dog. She also enjoys reading, taking walks, and binge-watching shows on Netflix.

Will Kelleher, Environmental Science Intern

Will returns to Princeton Hydro for second summer with our Aquatics team. Will is a rising senior at the University of Vermont, studying Environmental Science with a concentration in Water Resources. His current career interests are focused around wetlands restoration and water chemistry. He recently spent two weeks studying water management and sustainable technology in the Netherlands and in the past has helped with biological and chemical stream monitoring with Raritan Headwaters Association. At school, he is involved in many environmental clubs on campus including Wildlife Society, Beekeeping Club and Green House Residential Sustainability.

Outside his love for the environment, Will is also an avid hockey fan, fisherman, and aspiring traveler of the world.

Nicole King, Water Resources Intern

Nicole is an environmental engineering student with experienced in CAD drafting, technical writing, and environmental sampling processes. Prior to Princeton Hydro, she worked for an automated assembly systems manufacturer where she developed her drafting skills and organized an archive system for their project drawings.As a freshman at the University of New Hampshire, Nicole has participated in research investigating the effect of high precipitation events using coded and built pressure-depth sensors in a dammed reservoir. She is also a part of an entrepreneurship club where she expressed innovation and collaboration with other members.

In her free time, Nicole competitively swims and enjoys reading, drawing, and watching movies.

Nina Petracca, landscape design intern

Nina is a rising senior at Rutgers University studying in the Landscape Architecture Program. In her studies Nina has focused on park design, environmental planning, stream bank restoration and planting design. Her most recent project involved designing a park in Germany to compliment an engineered wetland. When she enters the Rutgers Landscape Architecture MLA Program she plans to focus her education on wetland design and its beneficial relation to the community. Over the course of her internship with us, Nina hopes to gain a better understanding of wetland design and eco-restoration and develop stronger graphic skills.

In her free time Nina enjoys hiking, dancing, cooking, spending time with loved ones and being a bird mom.

Lucas Pick, Environmental Science Intern

Lucas is entering his final year at the College of New Jersey. He is majoring in Biology with a focus in Ecology and Evolution and is minoring in Statistics. He performs research through TCNJ to investigate the interactive effects of deer and invasive species on suburban forest plant communities. He is also working on a capstone study to develop a structural equation model that encompasses the driving factors for oak regeneration. Lucas has been exposed to a wide variety of natural resource management projects, including forest stand improvements, wetland enhancements, stream restorations, and dam removals. He is seeking a career in ecology, agriculture, and natural resource management, and has joined Princeton Hydro in hopes of developing his knowledge of aquatic ecology and environmental science.

In his free time, Lucas enjoys long distance running, playing baseball, and practicing guitar.

Learn more about our team.

 

Part Two: Damned If You Do, Dammed If You Don’t: Making Decisions and Resolving Conflicts on Dam Removal

Credit: FWRA.org

In this two part blog series piece we take a look at addressing and preventing potential conflicts and the key factors involved in dam removal decision-making – to remove or not to remove.

What to Do About Dams

Typically, the decision to remove a dam is made by varying entities, depending on the regulatory oversight of the dam. In most cases, the dam owner itself is the decision-maker, often deciding that the costs of continuing to operate and maintain the dam are more than removing the dam. State dam safety offices can sometimes order a dam to be removed or lowered if there are major safety concerns. State fish and wildlife offices and environmental organizations are also often involved in the decision-making, particularly when the goals of the project include restoration of habitat for migratory and resident aquatic species. If the dam in question is a hydropower facility, the Federal Energy Regulatory Commission also has the power to order a hydropower dam under their jurisdiction to be removed for both environmental and safety reasons.

Laura Wildman, P.E., dam removal and river restoration expert and Director of Princeton Hydro’s New England Regional Office, says, “Identifying key barriers early on and understanding which of those barriers might have potential solutions versus remain an impediment, is critical to prioritizing limited ecological restoration resources.”

The careful formulation and communication of the benefits for dam removal specific to each project, adequate education of the public, and stakeholder involvement are incredibly important components to dam removal conflict resolution. As is an understanding that not all dams will or should be removed, and that the local community and stakeholders needs/concerns should be fully integrated into the decision-making process.

Key facets of stakeholder involvement, include:

  • Initial Stakeholder Discussions: Gather information and input from all stakeholders involved
  • Field Work & Initial Assessment: Know the project site inside and out, conduct an in-person inspection, and gather all of the initial data needed to have an informed discussion
  • Report Back with Results, without Judgement: Share the current state of the dam with stakeholders & regulators, without implying any solution or recommendation
  • Detailed Analysis, Feasibility & Alternatives Assessment: Collaboratively select alternative options, and include for a discussion of the alternative analysis process in the pre-application regulatory and stakeholder meetings
  • Formal Regulatory Review w/ Public Meetings: Present solution and/or submit engineering design and permit applications to regulators, and host public meetings to inform the community about the timeline and status.  Some public meetings are required as part of the regulatory process, however, it is important to keep the stakeholders involved in the process. So, additional meetings or presentations are recommend for true engagement.
  • Implementation: If the solution is to remove or repair the dam, continue to update the community about the status and timeline of construction. Local residents, elected officials, and nonprofit groups could be your best allies in keeping everyone informed.

It’s crucial to keep stakeholders and general public informed throughout the process via regular social media and traditional media outreach. Successful projects are based on a transparent process that integrates the local community.  It is the local community that then becomes the environmental stewards of the restored river system.

Celebrating the start of the Columbia Dam removal with the New Jersey Nature Conservancy, American Rivers, Princeton Hydro, USFWS, NJDEP, the local community, and other stakeholders.

 

Analyzing Dams for Removal

There are few “easy” dam removal decisions. Most dams have both positive and negative impacts. The challenge in making a sound decision about whether or not to remove a dam is to identify all of the costs and benefits of keeping (and eventually repairing or replacing) that particular structure, as well as the costs and benefits of removing it, and balance the findings to determine the best option. It is important to ensure that the full range of costs and benefits are identified.

Working through the many issues involved in deciding to keep or remove a dam can offer surprising conclusions that can lead to a reasoned approach – reducing subjectivity and increasing objectivity. The key issues typically investigated include:

  • Impounded sediment
  • Infrastructure/utility impacts
  • Current use (& economic value of dam)
  • Environmental concerns & benefits
  • Geomorphic equilibrium
  • Public health & safety
  • Flooding & hydrologic impacts
  • Aesthetic & sentimental value
  • Historic/archeological
  • Community concerns
  • Sensitive or invasive species
  • Water rights
  • Cost & funding availability

When making a final decision, it’s important to critically examine all factors to understand the influences on the decision. No matter the final outcome, at least it will be a well-informed process, and the information and understanding gained can help shape future decisions.

Although each dam removal project is unique, we developed a standard process that we follow:

While there is often no definitive answer to a question about whether a particular dam should be removed, there is a right and wrong way to go about making a dam removal decision. A good dam removal/retention decision is one that is based on an assessment of all the facts, collaboration with all stakeholders, and objective criteria.

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of dozens of dams throughout the Northeast.  To contact us and learn more about our fish passage and dam removal engineering services, visit: bit.ly/DamBarrier.

Revisit part-one of this blog series:

INSERT LINK

Recycled Christmas Trees Used to Restore Disappearing NJ Shoreline

INNOVATIVE COASTAL RESILIENCY DESIGN USING RECYCLED CHRISTMAS TREES IMPLEMENTED BY VOLUNTEERS ALONG DISAPPEARING POINT PLEASANT SHORELINE

To prevent further erosion at the Slade Dale Sanctuary in Point Pleasant, dozens of volunteers helped stabilize the shoreline using a technique that has never been done before in New Jersey.  On Saturday, American Littoral Society, in partnership with Princeton Hydro, Borough of Point Pleasant, New Jersey Nature Conservancy, New Jersey Corporate Wetlands Restoration Partnership, and the Point Pleasant Rotary Club, organized dozens of volunteers to restore the shoreline and prevent further erosion at the Slade Dale Sanctuary using recycled Christmas trees.

As one of only a few areas of open space left in Point Pleasant, the 13-acre Slade Dale Sanctuary is an important part of the local ecosystem, and is home to a number of unique animals and plants. This waterfront preserve along the North Branch Beaver Dam Creek is predominantly tidal marsh, which provides habitat for various birds, including osprey, as well as passive recreation opportunities for the community.

Unfortunately, the Slade Dale Sanctuary is disappearing. Since 1930, the shoreline of Slade Dale Sanctuary has retreated approximately 300 feet, equal to the length of a football field, and the channels into the marsh have increased in number and size, according to a study we conducted on behalf of American Littoral Society, for which we provide engineering and natural resources management consulting services.

In order to stabilize the shoreline, restore the marsh, and enhance the ecological function and integrity of the preserve, Princeton Hydro developed a conceptual and engineering design using living shoreline features to enhance ecological value and reduce erosion. The final conceptual plan for restoration uses tree vane structures to attenuate wave action, foster sediment accretion, and reduce erosion along the coast.

To implement this vision and begin building back marsh, the project team is constructing several Christmas tree breakwaters and Christmas tree vanes that mimic naturally occurring debris structures in tidal systems and enhance habitat opportunity and shelter for aquatic life. Volunteers came together on Saturday, May 11 to help with the construction. The Mayor of Point Pleasant Robert A. Sabosik also attended the event, “The Barnegat Bay is an attribute that we all enjoy, and it’s something we have to protect.”

After the 2018 holiday season, the Good Sheppard Lutheran Church in Point Pleasant provided space to collect and store donated Christmas trees, which were then moved to the marsh a few days before the event. On the day of the event, recycled Christmas trees were transported from their staged locations on the marsh to the breakwater sections that were previously installed in the water. To transport them across the water to the pilings, volunteers used two methods: by walking a skiff boat loaded with trees through the water to the pilings or by forming assembly line from the shore to pilings to guide floating trees through the water (check out the album below!).  Then, they stuffed the Christmas trees between the pilings, securely tied them down, and staked Christmas trees directly into the creek bottom. For extra assurance, the placed and tied heavy bags of used oyster shells on top of the tree line. Oyster shells were donated by local Monmouth County restaurants in an effort to reduce waste streams.

“We really enjoyed participating in this event with American Littoral Society and so many wonderful volunteers,” Christiana L. Pollack, GISP, CFM, Princeton Hydro’s Project Manager for this restoration effort. “It is so wonderful to see this project coming to fruition. We’re so proud of our partnership with American Littoral Society and our combined efforts to revitalize and rehabilitate our precious coastal habitats.”

Members of the media were invited to attend the volunteer event. News 12 New Jersey covered the event and aired a story on it during their Sunday news broadcast, and NJTV News will be airing the story in the near future.

Many thanks to everyone who came out in support of this important restoration effort at Slade Dale Sanctuary American Littoral Society hosts volunteer events throughout the year. Go here to get involved.

 

Part One: Damned If You Do, Dammed If You Don’t: Making Decisions and Resolving Conflicts on Dam Removal

People have been building dams since prerecorded history for a wide variety of economically valuable purposes including water supply, flood control, and hydroelectric power. Back in the 1950s and 60s, the U.S. saw a boom in infrastructure development, and dams were being built with little regard to their impacts on rivers and the environment. By the 1970s, the rapid progression of dam building in the U.S. led researchers to start investigating the ecological impacts of dams. Results from these early studies eventually fueled the start of proactive dam removal activities throughout the U.S.

Despite the proven benefits of dam removal, conflicts are a prevalent part of any dam removal project. Dam removal, like any other social decision-making process, brings up tensions around economics and the distribution of real and perceived gains and losses. In this two part blog series, we take a look at addressing and preventing potential conflicts and the key factors involved in dam removal decision-making – to remove or not to remove.

Why We Remove Dams

The primary reasons we remove dams are safety, economics, ecology, and regulatory. There has been a growing movement to remove dams where the costs – including environmental, safety, and socio-cultural impacts – outweigh the benefits of the dam or where the dam no longer serves any useful purpose. In some cases, it’s more beneficial economically to remove a dam than to keep it, even if it still produces revenue. Sometimes the estimated cost of inspection, repair, and maintenance can significantly exceed the cost of removal, rendering generated projected revenue insignificant.

Safety reasons are also vital, especially for cases in which dams are aging, yet still holding large amounts of water or impounded sediment. As dams age and decay, they can become public safety hazards, presenting a failure risk and flooding danger. According to American Rivers, “more than 90,000 dams in the country are no longer serving the purpose that they were built to provide decades or centuries ago.” Dam removal has increasingly become the best option for property owners who can no longer afford the rising cost of maintenance and repair work required to maintain these complex structures.

The goal of removal can be multi-faceted, including saving taxpayer money; restoring flows for migrating fish, other aquatic organisms, and wildlife; reinstating the natural sediment and nutrient flow; eliminating safety risks; and restoring opportunities for riverine recreation.

Moosup River

Common Obstacles to Dam Removal

Dam removal efforts are often subjected to a number of different obstacles that can postpone or even halt the process altogether. Reasons for retaining dams often involve: aesthetics and reservoir recreation; water intakes/diversions; hydroelectric; quantity/quality of sediment; funding issues; cultural/historic values of manmade structures; owner buy-in; sensitive species; and community politics.

Of those common restoration obstacles, one of the more frequently encountered challenges is cost and funding. Determining who pays for the removal of a dam is often a complex issue. Sometimes, removal can be financed by the dam owner, local, state, and federal governments, and in some cases agreements are made whereby multiple stakeholders contribute to cover the costs. Funding for dam removal projects can be difficult to obtain because it typically has to come from a variety of sources.

Anecdotally, opposition also stems from fear of change and fear of the unknown. Bruce Babbitt, the United States Secretary of the Interior from 1993 through 2001 and dam removal advocate, said in an article he wrote, titled A River Runs Against It: America’s Evolving View of Dams, “I always wonder what is it about the sound of a sledgehammer on concrete that evokes such a reaction? We routinely demolish buildings that have served their purpose or when there is a better use for the land. Why not dams? For whatever reason, we view dams as akin to the pyramids of Egypt—a permanent part of the landscape, timeless monuments to our civilization and technology.”

Negative public perceptions of dam removal and its consequences can seriously impede removal projects. Although there are many reasons for the resistance to dam removal, it is important that each be understood and addressed in order to find solutions that fulfill both the needs of the environment and the local communities.

Stay tuned for Part Two of this blog series in which we explore strategies for analyzing dams and what goes into deciding if a dam should remain or be removed.

Study Data Leads to Healthier Wreck Pond Ecosystem

Wreck Pond is a tidal pond located on the coast of the Atlantic Ocean in southern Monmouth County, New Jersey. The 73-acre pond, which was originally connected to the sea by a small and shifting inlet, got its name in the 1800s due to the numerous shipwrecks that occurred at the mouth of the inlet. The Sea Girt Lighthouse was built to prevent such accidents. In the 1930s, the inlet was filled in and an outfall pipe was installed, thus creating Wreck Pond. The outfall pipe allowed limited tidal exchange between Wreck Pond and the Atlantic Ocean.

In the 1960s, Wreck Pond flourished with wildlife and was a popular destination for recreational activities with tourists coming to the area mainly from New York City and western New Jersey. In the early spring, hundreds of river herring would migrate into Wreck Pond, travelling up its tributaries — Wreck Pond Brook, Hurleys Pond Brook and Hannabrand Brook — to spawn. During the summer, the pond was bustling with recreational activities like swimming, fishing, and sailing.

Over time, however, the combination of restricted tidal flow and pollution, attributable to increased development of the watershed, led to a number of environmental issues within the watershed, including impaired water quality, reduced fish populations, and flooding.

Throughout the Wreck Pond watershed, high stream velocities during flood conditions have caused the destabilization and erosion of stream banks, which has resulted in the loss of riparian vegetation and filling of wetlands. Discharge from Wreck Pond during heavy rains conveys nonpoint source pollutants that negatively impact nearby Spring Lake and Sea Girt beaches resulting in beach closings due to elevated bacteria counts. Watershed erosion and sediment transported with stormwater runoff has also contributed to excessive amounts of sedimentation and accumulations of settled sediment, not only within Wreck Pond, but at the outfall pipe as well. This sediment further impeded tidal flushing and the passage of anadromous fish into and out of Wreck Pond.

In 2012, Hurricane Sandy caused wide-spread destruction throughout New Jersey and the entire eastern seaboard. The storm event also caused a major breach of the Wreck Pond watershed’s dune beach system and failure of the outfall pipe. The breach formed a natural inlet next to the outfall pipe, recreating the connection to the Atlantic Ocean that once existed. This was the first time the inlet had been open since the 1930s, and the reopening cast a new light on the benefits of additional flow between the pond and the ocean.

Hurricane Sandy sparked a renewed interest in reducing flooding impacts throughout the watershed, including efforts to restore the water quality and ecology of Wreck Pond. The breach caused by Hurricane Sandy was not stable, and the inlet began to rapidly close due to the deposition of beach sand and the discharge of sediment from Wreck Pond and its watershed.

Princeton Hydro and HDR generated the data used to support the goals of the feasibility study through a USACE-approved model of Wreck Pond that examined the dynamics of Wreck Pond along with the water bodies directly upland, the watershed, and the offshore waters in the immediate vicinity of the ocean outfall. The model was calibrated and verified using available “normalized” tide data. Neighboring Deal Lake, which is also tidally connected to the ocean by a similar outfall pipe, was used as the “reference” waterbody. The Wreck Pond System model evaluated the hydraulic characteristics of Wreck Pond with and without the modified outfall pipe, computed pollutant inputs from the surrounding watershed, and predicted Wreck Pond’s water quality and ecological response. The calibrated model was also used to investigate the effects and longevity of dredging and other waterway feature modifications.

As part of the study, Princeton Hydro and HDR completed hazardous, toxic, and radioactive waste (HTRW) and geotechnical investigations of Wreck Pond’s sediment to assess potential flood damage reduction and ecological restoration efforts of the waterbody. The investigation included the progression of 10 sediment borings conducted within the main body of Wreck Pond, as well as primary tributaries to the pond. The borings, conducted under the supervision of our geotechnical staff, were progressed through the surgical accumulated sediment, not the underlying parent material. Samples were collected for analysis by Princeton Hydro’s AMRL-accredited (AASHTO Materials Reference Library) and USACE-certified laboratory. In accordance with NJDEP requirements, sediment samples were also forwarded to a subcontracted analytical laboratory for analysis of potential nonpoint source pollutants.

In the geotechnical laboratory, the samples were subjected to geotechnical indexing tests, including grain size, organic content, moisture content, and plasticity/liquid limits. For soil strength parameters, the in-field Standard Penetration Test (SPT), as well as laboratory unconfined compression tests, were performed on a clay sample to provide parameters for slope stability modeling.

The culvert construction and sediment dredging were completed at the end of 2016. Continued restoration efforts, informed and directed by the data developed through Princeton Hydro’s feasibility study, are helping to reduce the risk of flooding to surrounding Wreck Pond communities, increase connectivity between the pond and ocean, and improve water quality. The overall result is a healthier, more diverse, and more resilient Wreck Pond ecosystem.

During the time of the progression of study by the USACE, the American Littoral Society and the towns of Spring Lake and Sea Girt were also progressing their own restoration effort and completed the implementation of an additional culvert to the Atlantic Ocean.  The American Littoral Society was able to utilize the data, analysis, and modeling results developed by the USACE to ensure the additional culvert would increase tidal flushing and look to future restoration projects within Wreck Pond.

American Littoral Society

 

To learn more about our geotechnical engineering services, click here.

Employee Spotlight: Meet Our New Team Members

We’re excited to announce the expansion of our growing business with the addition of six team members who have experience and qualifications in a variety of fields related to water resource management.

Meet the new team members:

alexi sanchez de boado, DC Regional Office Manager and Senior Project Manager

As DC Regional Office Manager and Senior Project Manager, Alexi focuses on watershed management and green infrastructure. For almost two decades, he has managed watershed management projects in the DC metro area, and beyond, for federal, state, county and local governments and other government entities under the authority of the Clean Water Act, National Pollution Discharge Elimination System (NPDES), and related regulations.

Serving as an urban watershed manager and regulator for six years for the District of Columbia’s Watershed Protection Division, Nonpoint Source Management Branch, Alexi managed cross-jurisdictional, urban watershed rehabilitation projects, developed and coordinated the District’s Low Impact Development (LID) Initiatives Program, and oversaw complex stream and watershed assessment projects with a huge variety of stakeholders, from local NGOs to federal land holders. Since then, he has consulted as a scientist in both large and small consulting firms focusing on stormwater pollution, stream restoration, watershed planning, and green infrastructure.

Alexi holds a Master of Science in Environmental and Forest Biology from the State University of New York (SUNY) College of Environmental Science and Forestry (ESF) and a Master of Public Administration from the Maxwell School of Citizenship and Public Affairs at Syracuse University.

In his spare time, Alexi enjoys attending concerts, biking, and traveling, especially through Latin America.

Amanda cote, regulatory specialist

Amanda graduated from Bridgewater State University in Massachusetts with a Bachelor of Science in Geography. She has background knowledge in GIS which lead her to work in college labs making maps and running various applications.  She has also participated in water resources projects and is eager to learn.

In her free time, she enjoys being in the great outdoors. Adventuring is a huge part of her life in any form that she can experience it: hiking, fishing, snowshoeing, swimming, backpacking, etc. But of all places to explore, Amanda’s favorite place to be is on top of a mountain, reflecting on and appreciating the journey she took to climb to its peak.

Matt PapPas, staff engineer

Matt is a newcomer to the engineering field, just graduating in the summer of 2018 with a Bachelor Degree in Civil Engineering and minor in Environmental Engineering from the University of Delaware. As an undergraduate, he was an active member of the UD ASCE chapter, where he was a leader in the organization and eventual captain of the concrete canoe team.

Prior to Princeton Hydro, he worked for a large construction firm in Delaware where he became quite familiar with the practical engineering world and was able to develop his working knowledge of constructability as well as hone his technical writing skills.

In his spare time, Matt enjoys cooking, hiking and wood carving.

Johnny quispe, Environmental Scientist

Johnny is a PhD candidate at Rutgers University’s Graduate Program of Ecology and Evolution investigating the effects of sea level rise on coastal ecosystems and communities. Through his research, he is identifying migration opportunity zones for marsh migration as well as areas for restoration and flood risk management. Johnny integrates social, economic, engineering, and natural systems into his projects to make coastal communities more resilient to natural disasters and climate change.

After Johnny earned his Bachelor of Science in Environmental Policy, Institutions, and Behaviors at Rutgers University, he focused on the conservation, restoration, and remediation of sites in NJ via a variety of roles in the nonprofit, public, and academic sectors. Johnny interned at the New Jersey Department of State and the Office of the Lieutenant Governor, New Jersey Future, Jersey Water Works, and at USEPA Region 2 Headquarters, where he conducted research for the Emergency and Remedial Response Division. In his spare time, he enjoys traveling, hiking, and playing board games.

Jake Schwartz, Project Engineer

Jake is a Project Engineer with a BS in Civil Engineering from Rowan University, which he earned in 2017. After graduating college, Jake worked for a civil and environmental consulting company, where he gained experience with stormwater design, flooding, grading, site layout, construction inspection/administration, and environmental regulation. Prior to his career in civil engineering, Jake worked his way up in the pool industry, starting as a swim instructor. He quickly moved up to a life guard position, and then eventually became responsible for managing 12 commercial swimming pools. As a pool manager, Jake was responsible for system upkeep and water chemistry in the swimming pools. This position enabled Jake to acquire hands on experience with water chemistry and hydraulic principles. In this position, Jake also oversaw 40 staff members, leaving him with substantial leadership experience. Jake’s goal is to use his knowledge and experience to design sustainable site plans for Princeton Hydro’s projects.

Outside of work, Jake enjoys hiking, swimming, going to the beach, and hanging out with friends.

RYAN WASIK, EIT, water resource engineer

Ryan is a Water Resource Engineer with a B.S. in Civil Engineering and a minor in Environmental Engineering from Widener University in in Chester, PA. After graduating, he worked as a highway inspector for roadway reconstruction and rehab projects in Delaware. Then, he worked as a project engineer designing and drafting for a wide range of civil/site design projects throughout the Philadelphia region and New Jersey. He has experience in roadway design, ADA ramp design, site grading and layout, utility design, erosion and sediment control measures, and stormwater design/inspections.

In his free time, Ryan enjoys playing golf, disk golf, running, and playing bass guitar.

Part Two: Reducing Flood Risk in Moodna Creek Watershed

Photo of Moodna Creek taken from the Forge Hill Road bridge, New Windsor Post Hurricane Irene (Courtesy of Daniel Case via Wikimedia Commons)

This two-part blog series showcases our work in the Moodna Creek Watershed in order to explore common methodologies used to estimate flood risk, develop a flood management strategy, and reduce flooding.

Welcome to Part Two: Flood Risk Reduction and Stormwater Management in the Moodna Creek Watershed

As we laid out in Part One of this blog series, the Moodna Creek Watershed, which covers 180 square miles of eastern Orange County, New York, has seen population growth in recent years and has experienced significant flooding from extreme weather events like Hurricane Irene, Tropical Storm Lee, and Hurricane Sandy. Reports indicate that the Moodna Creek Watershed’s flood risk will likely increase as time passes.

Understanding the existing and anticipated conditions for flooding within a watershed is a critical step to reducing risk. Our analysis revealed that flood risk in the Lower Moodna is predominantly driven by high-velocity flows that cause erosion, scouring, and damage to in-stream structures. The second cause of risk is back-flooding due to naturally formed and man-made constrictions within the channel. Other factors that have influenced flood risk within the watershed, include development within the floodplain and poor stormwater management.

Now, let’s take a closer look at a few of the strategies that we recommended for the Lower Moodna Watershed to address these issues and reduce current and future flood risk:

Stormwater Management

Damage to Butternut Drive caused when Moodna Creek flooded after Hurricane Irene (Courtesy of Daniel Case via Wikimedia Commons)

Stormwater is the runoff or excess water caused by precipitation such as rainwater or snowmelt. In urban areas, it flows over sewer gates which often drain into a lake or river. In natural landscapes, plants absorb and utilize stormwater, with the excess draining into local waterways.  In developed areas, like the Moodna Creek watershed, challenges arise from high volumes of uncontrolled stormwater runoff. The result is more water in streams and rivers in a shorter amount of time, producing higher peak flows and contributing to flooding issues.

Pollutant loading is also a major issue with uncontrolled stormwater runoff. Population growth and development are major contributors to the amount of pollutants in runoff as well as the volume and rate of runoff. Together, they can cause changes in hydrology and water quality that result in habitat loss, increased flooding, decreased aquatic biological diversity, and increased sedimentation and erosion.

To reduce flood hazards within the watershed, stormwater management is a primary focus and critical first step of the Moodna Creek Watershed Management Plan. The recommended stormwater improvement strategies include:

  • Minimizing the amount of impervious area within the watershed for new development, and replacing existing impervious surfaces with planter boxes, rain gardens and porous pavement.
  • Utilizing low-impact design measures like bioretention basins and constructed-wetland systems that mimic the role of natural wetlands by temporarily detaining and filtering stormwater.
  • Ensuring the long-term protection and viability of the watershed’s natural wetlands.

The project team recommended that stormwater management be required for all projects and that building regulations ensure development does not change the quantity, quality, or timing of run-off from any parcel within the watershed. Recommendations also stressed the importance of stormwater management ordinances focusing on future flood risk as well as addressing the existing flooding issues.

Floodplain Storage

Floodplains are the low-lying areas of land where floodwater periodically spreads when a river or stream overtops its banks. The floodplain provides a valuable function by storing floodwaters, buffering the effect of peak runoff, lessening erosion, and capturing nutrient-laden sediment.

Communities, like the Moodna Creek watershed, can reduce flooding by rehabilitating water conveyance channels to slow down the flow, increasing floodplain storage in order to intercept rainwater closer to where it falls, and creating floodplain benches to store flood water conveyed in the channel.  Increasing floodplain storage can be an approach that mimics and enhances the natural functions of the system.

One of the major causes of flooding along the Lower Moodna was the channel’s inability to maintain and hold high volumes of water caused by rain events. During a significant rain event, the Lower Moodna channel tends to swell, and water spills over its banks and into the community causing flooding. One way to resolve this issue is by changing the grading and increasing the size and depth of the floodplain in certain areas to safely store and infiltrate floodwater. The project team identified several additional opportunities to increase floodplain storage throughout the watershed.

One of the primary areas of opportunity was the Storm King Golf Club project site (above). The team analyzed the topography of the golf course to see if directing flow onto the greens would alter the extent and reach of the floodplain thus reducing the potential for flooding along the roadways and properties in the adjacent neighborhoods. Based on LiDAR data, it was estimated that the alteration of 27 acres could increase floodplain storage by 130.5 acre-feet, which is equivalent to approximately 42.5 million gallons per event.

Land Preservation & Critical Environmental Area Designation

For areas where land preservation is not a financially viable option, but the land is undeveloped, prone to flooding, and offers ecological value that would be impacted by development, the project team recommended a potential Critical Environmental Area (CEA) designation. A CEA designation does not protect land in perpetuity from development, but would trigger environmental reviews for proposed development under the NY State Quality Environmental Review Act. And, the designation provides an additional layer of scrutiny on projects to ensure they will not exacerbate flooding within the watershed or result in an unintentional increase in risk to existing properties and infrastructure.

Conserved riparian areas also generate a range of ecosystem services, in addition to the hazard mitigation benefits they provide. Protected forests, wetlands, and grasslands along rivers and streams can improve water quality, provide habitat to many species, and offer a wide range of recreational opportunities. Given the co-benefits that protected lands provide, there is growing interest in floodplain conservation as a flood damage reduction strategy.


These are just a few of the flood risk reduction strategies we recommended for the Lower Moodna Creek watershed. For a more in-depth look at the proposed flood mitigation strategies and techniques, download a free copy of our Moodna Creek Watershed and Flood Mitigation Assessment presentation.

Revisit part-one of this blog series, which explores some of the concepts and methods used to estimate flood risk for existing conditions in the year 2050 and develop a flood management strategy.

Two-Part Blog Series: Flood Assessment, Mitigation & Management

For more information about Princeton Hydro’s flood management services, go here: http://bit.ly/PHfloodplain

Conservation Spotlight: Reducing Flood Risk and Restoring Wetlands in Jamaica Bay

Located in Queens, New York on the northern shore of Jamaica Bay, Spring Creek South contains approximately 237 acres of undeveloped land, including wetlands and 2.4 miles of coastline. The site is bounded by the Howard Beach residential neighborhood in Queens, a commercial area along Cross Bay Boulevard, the Belt Parkway, and Jamaica Bay. The northwest section of Spring Creek South is part of the National Park Service’s Gateway National Recreation Area, and is largely comprised of small patches of degraded tidal marsh and disturbed and degraded upland ecosystems.

On October 29, 2012, Hurricane Sandy drove a catastrophic storm surge into the New Jersey and New York coastlines. Spring Creek South and the surrounding community of Howard Beach experienced record flooding and damage to property and critical infrastructure. Storm tides caused damage and erosion along the shoreline and in the salt marsh area, degrading important habitat and leaving the site vulnerable to invasive species.

Hurricane Sandy Aftermath at Howard Beach, taken 10/30/2012 by Pam Andrade

The New York State Division of Homeland Security and Emergency Services (NYSDHSES) was awarded funding from FEMA’s Hazard Mitigation Grant Program to restore Spring Creek South. The U.S. Army Corps of Engineers (USACE) New York District, serving as project administrator, contracted Princeton Hydro to provide ecosystem restoration services. The goal of the project is to reduce future flood risk exposure while also protecting, restoring, and improving the quality and function of ecological systems; improving stormwater management and water quality; and enhancing the park’s visitor experience.

To achieve this goal, the project team is using an integrated approach that involves utilizing green infrastructure to create a natural barrier for the community and reduce the risks of coastal storms. Project activities include berm construction and the restoration of tidal marsh, creation of freshwater wetland forest, and creation of maritime shrub, forest, and grassland habitats, as well as stabilization of the existing shoreline.

On December 31, 2018, we completed Phase One of the project, which entails engineering design and preliminary permitting. More specifically, we’ve provided conceptual planning; analysis of subsurface soils for geotechnical properties and hazardous waste; coastal and freshwater wetland delineations; biological benchmarking analysis; and the development of sea level rise curves and two-dimensional hydrologic and hydraulic coastal modeling. As part of the hydrology study, we analyzed what the site could be expected to look like in 50 years due to climate changes and sea level rise. Our engineering design was also brought to 65% completion.

We also obtained permits, prepared the Environmental Assessment (EA), and oversaw the National Environmental Policy Act (NEPA) process. The EA received a “Finding of No Significant Impact” (FONSI) from FEMA, which means the environmental analysis and interagency review concluded that the project has no significant impacts on the quality of the environment.

Due to the complex nature of this project and its location, we are coordinating with a variety of different entities, including the local Howard Beach Community Board, the FAA (proximity to JFK International Airport), Port Authority, USACE, NOAA Fisheries, USFWS, USEPA, NYSDEC, NYC DEP, the National Park Service, HDR Engineering and WSP Engineering.

Phase Two of the project is the construction phase, which is expected to take about two years to complete. A key part of the Spring Creek South construction activities is the restoration of approximately 40 acres of tidal marsh, which is anticipated to improve water quality locally by stabilizing sediment, reducing erosion, and filtering dissolved particulate materials. The project team will restore existing coastline areas and install a salt marsh along the shoreline. Planted with native flora, like Spartina alterniflora, a perennial deciduous grass found in intertidal wetlands, the coastal salt marsh will help to stabilize sediment. Additionally, removing invasive species like Phragmites australis from the area and replacing it with native plant species will increase the ability for native vegetation to colonize the site, improve vegetative diversity, and reduce fire risk in the park.

A forested wetland area and berm will also be created in order to provide the surrounding communities with natural shields and buffers to future storms. The berm, with an elevation of 19 feet (NAVD88), will help to manage the risk of storm surge flooding caused by coastal storms. The forested wetland area will also provide improved stormwater runoff storage, naturally filter stormwater, and, via flap gates, direct its flow toward Jamaica Bay, away from residential and commercial properties.

These measures will help to dissipate wind and wave energy, increase shoreline resilience, improve stormwater management at the site, and create habitat that increases the ecological value and biodiversity at the site, while providing resilience benefits. Restoration activities will benefit vulnerable and rare ecological communities by producing localized environmental enhancements, including improving water quality and creating and restoring habitat. The project also increases opportunities for recreational uses such as wildlife viewing/photography, fishing, and nature study.

Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of wetland rehabilitation projects. To learn more about some of our ecosystem restoration and enhancement services, visit: bit.ly/PHwetland.

 

Employee Spotlight: Meet Our New Team Members

We’re excited to welcome four new members to our team. The addition of this group of talented individuals strengthens our commitment to delivering great service that exceeds our clients’ expectations.

Meet Our New Team Members
Miranda Lepek, EIT, Water Resource Engineer

Miranda is a civil engineer with expertise in grading and stormwater design, CAD drafting, environmental sampling, and construction oversight. Prior to Princeton Hydro, she worked for a small site development firm in Michigan where she developed her drafting skills and facilitated multiple aspects of private and commercial land development projects.

Miranda holds a B.S. in Civil Engineering from the University of Michigan – Ann Arbor. While on study abroad, she contributed to the one of the longest-running native amphibian field studies in New Zealand. In other previous experiences, she worked on major projects including the investigation phases of a Superfund site cleanup in Duluth, MN and a comprehensive sampling operation over 40 miles of the Hudson River near Albany, NY. In her free time, Miranda enjoys hiking, foraging, cooking and art.

Sumantha Prasad, PE, ENV SP, Water Resource Engineer

Sumantha is a Water Resource Engineer with a B.S. in Bioenvironmental Engineering from Rutgers University and a M.S. in Environmental Engineering and Science from Johns Hopkins University. She worked in Maryland for seven years focusing on ecological restoration projects, including stream restoration, wetland creation and enhancement, and stormwater management, and she worked for 3 years with a primary focus on highway hydrology and hydraulics.

In her spare time, she enjoys being a Toastmaster and serves as the Treasurer to a 501(c)3 organization dedicated to creating inclusive housing communities for adults with disabilities. She also enjoys telling terrible puns unapologetically.

Pat Rose, Environmental Scientist

Pat’s interest in aquatics began during a summer course studying at Lake Atitlán, Guatemala as an undergraduate at SUNY Oneonta. After graduation, he spent a year volunteering with AmeriCorps in Knoxville, Tennessee as part of a Water Quality Team. While in Tennessee, Pat spent the majority of his time educating high school students on how to protect and improve local waterways and watersheds as part of the Adopt-A-Watershed program. During his year with AmeriCorps, Pat worked with government organizations to perform biological sampling and erosion monitoring in local streams.

Pat graduated from SUNY Oneonta with a M.S. in Lake Management in December 2018. During his time in graduate school, he created an interim lake management plan for a small reservoir in New York that has had cyanobacterial blooms over the past few years. Pat spent this past summer completing a co-op with an aquatic plant management company in the Pacific Northwest, working primarily with invasive Eurasian and hybrid watermilfoil populations.

Duncan Simpson, Senior Environmental Scientist

For nearly a decade, Duncan has served as an Environmental Scientist/Planner in the Mid-Atlantic Region. His experience includes a wide range of natural resource studies, documentation, and permitting at both the project and program level. He has special expertise in wetlands; Waters of the US delineations; and permitting for stormwater management facilities, stream restoration, and TMDL program projects. He has conducted forest stand delineations; rare, threatened and endangered species consultations; mitigation monitoring; and National Environmental Policy Act (NEPA) documentation.

Duncan holds an M.S in Biology from Towson University and a B.S. in Environmental Science with a Wildlife and Fisheries Conservation Minor from the University of Massachusetts. During his graduate studies, he researched amphibian species found in Delmarva Bays and testing models that predict their presence based on abiotic habitat characteristics. He also served as a student member of the Northeast Partners in Amphibian and Reptile Conservation (NEPARC) steering committee. Duncan is a Professional Wetland Scientist and member of the Society of Wetland Scientists. In his spare time, he enjoys hiking with his dog and learning how to fly fish.

 

Employee Spotlight: Helping Communities Around the World Access Water Resources

We’re Proud to Put the Spotlight on Natalie Rodrigues, Staff Engineer And Engineers Without Borders Co-President

As a staff engineer specializing in water resources, Natalie Rodrigues, EIT, CPESC-IT works on a wide range of projects from stormwater management to ecosystem restoration to dam safety. Outside of the office, Natalie is an active volunteer with Engineers Without Borders (EWB), a nonprofit organization that works to build a better world through engineering projects that aid communities in meeting their basic needs.

EWB volunteers work with communities in the U.S. and throughout the world to find appropriate solutions for their infrastructure needs, including clean water supply; sanitation; sustainable energy; structures like bridges and buildings; and various agriculture essentials from irrigation systems to harvest processing.  Natalie began volunteering for the organization six years ago while attending college at the SUNY College of Environmental Science and Forestry where she earned her Bachelor of Science in Environmental Resources Engineering with a focus in water resources.

Natalie and Lola, a student from the elementary school in Guatemala where Natalie assisted on an EWB project to install a latrine system

Her first big volunteer project, which was done in collaboration with EWB’s Syracuse Professionals Chapter, was designing and building a system of composting latrines for an elementary school in the small town of Las Majadas, Guatemala. Natalie provided assistance on several aspects of the project, including working on a Health and Safety Plan. The completion of this project helped to prevent the spread of disease, as well as treat waste without the need for a constant water supply/sewer system. The long-lasting design also increases the health practices and hygiene of the community, creating a safer place for education.

Natalie also served as secretary of the university’s EWB chapter for two years, then became the Regional Administrator for the Northeast Regional Committee, and is now starting her third year as a Co-President of the region.

In her current role with the regional committee, Natalie helps to provide resources for members and facilitates communication between EWB Headquarters and individual chapters. She assists with various mini-conferences and workshops throughout the region and provides opportunities for members to obtain Professional Development Hours and certifications. She is also a part of the EWB’s Diversity and Inclusion Task Force and the Council of Regional Presidents.

Natalie stands with her 2018 Northeast Regional Committee members at the 2018 National Conference

We’re so proud to have Natalie on our team and truly value the work she does inside and outside the office.