Managing Urban Stormwater Runoff and Revitalizing Natural Habitat at Harveys Lake

Measuring 630+ acres, Harveys Lake, located in Luzerne County, Pennsylvania, just northeast of Wilkes-Barre, is the largest natural lake (by volume) within the Commonwealth of Pennsylvania, and is one of the most heavily used lakes in the area. It is classified as a high quality – cold water fishery habitat (HQ-CWF) and is designated for protection under the classification.

Since 2002, The Borough of Harveys Lake and the Harveys Lake Environmental Advisory Council  has worked with Princeton Hydro on a variety of lake management efforts focused around maintaining high water quality conditions, strengthening stream banks and shorelines, and managing stormwater runoff.

Successful, sustainable lake management requires identifying and correcting the cause of eutrophication as opposed to simply reacting to the symptoms of eutrophication (algae and weed growth). As such, we collect and analyze data to identify the problem sources and use these scientific findings to develop a customized management plan that includes a combination of biological, mechanical, and source control solutions. Here are some examples of the lake management strategies we’ve utilized for Harveys Lake:

 

Floating Wetland Islands

Floating Wetland Islands (FWIs) are an effective alternative to large, watershed-based natural wetlands. Often described as self-sustaining, FWIs provide numerous ecological benefits. They assimilate and remove excess nutrients, like nitrate and phosphorous, that could fuel algae growth; provide habitat for fish and other aquatic organisms; help mitigate wave and wind erosion impacts; and provide an aesthetic element. FWIs are also highly adaptable and can be sized, configured, and planted to fit the needs of nearly any lake, pond, or reservoir.

Five floating wetland islands were installed in Harveys Lake to assimilate and reduce nutrients already in the lake. The islands were placed in areas with high concentrations of nutrients, placed 50 feet from the shoreline and tethered in place with steel cables and anchored. A 250-square-foot FWI is estimated to remove up to 10 pounds of nutrients per year, which is significant when it comes to algae.

Princeton Hydro worked with the Harveys Lake Environmental Advisory Council and the Borough of Harveys Lake to obtain funding for the FWIs through the Pennsylvania Department of Environmental Protection (PADEP).

 

Streambank & Shoreline Stabilization

Harveys Creek

The shoreline habitat of Harveys Lake is minimal and unusual in that a paved road encompasses the lake along the shore with most of the homes and cottages located across the roadway, opposite the lake. In addition to the lake being located in a highly populated area, the limited shoreline area adds to the challenges created by urban stormwater runoff.

Runoff from urban lands and erosion of streambanks and shorelines delivers nutrients and sediment to Harveys Lake. High nutrient levels in the lake contribute to algal blooms and other water quality issues. In order to address these challenges, the project team implemented a number of small-scale streambank and inlet stabilization projects with big impacts.

The work included the stabilization of the streambank downstream for Harveys Lake dam and along Harveys Creek, the design and installation of a riparian buffer immediately along the lake’s shoreline, and selective dredging to remove sediment build up in critical areas throughout the watershed.

 

Invasive Species Management

Hydrilla (Hydrilla verticillata), an aggressively growing aquatic plant, took root in the lake in 2014 and quickly infected 250 acres of the lake in a matter of three years. If left untreated, hydrilla will grow to the water’s surface and create a thick green mat, which prevents sunlight from reaching native plants, fish and other organisms below. The lack of sunlight chokes out all aquatic life.

In order to prevent hydrilla from spreading any further, Princeton Hydro and SePRO conducted an emergency treatment of the impacted area utilizing the systemic herbicide Sonar® (Fluridone), a clay-based herbicide. SonarOne, manufactured by SePRO, blocks hydrilla’s ability to produce chloroplasts, which in turn halts the photosynthetic process. The low-concentration herbicide does not harm fish, wildlife or people using the lake. Surveys conducted after the treatment showed it was working – the hydrilla had turned white and was dying off. Additional Sonar treatments followed and efforts to eradicate hydrilla in the lake continue.

Dr. Fred Lubnow, our Director of Aquatic Programs, estimates complete eradication of the aquatic plant could take around five years. Everyone can do their part in preventing the spread of this and other invasive species. Boaters and lake users must be vigilant and remove all vegetation from the bottom of watercrafts and trailers.

 

Stormwater Best Management Practices (BMPs)

In 2009, Princeton Hydro developed a stormwater implementation plan (SIP) for Harveys Lake. The goal of the stormwater/watershed-based efforts was to reduce the lake’s existing annual total phosphorus load to be in full compliance with the established Total Maximum Daily Load (TMDL). This TMDL is related to watershed-based pollutant loads from total phosphorus (TP) and total suspended solids (TSS), which can contribute to algal blooms.

A number of structural urban runoff projects were implemented throughout the watershed. This includes the design and construction of two natural stream channel projects restoring 500 linear feet of tributaries and reducing the sediment and nutrient loads entering the lake. A series of 38 urban runoff BMPs, including nutrient separating devices and roadside infiltration, were installed in areas immediately adjacent to the lake to further reduce the loads of nutrients and other pollutants reaching the lake.

The photos below show a stormwater project that was completed in the Hemlock Gardens Section of the Watershed. Hemlock Gardens is a 28-acre section of land located in the southeastern portion of the watershed. It contains approximately 26 homes, has very steep slopes, unpaved dirt roads, and previously had no stormwater infrastructure in place.

Two structural stormwater BMPs were installed:

  • A nutrient separating baffle box, which utilizes a three-chamber basin with screens to collect leaf litter, grass clippings and trash
  • A water polishing unit that provides a platform for secondary runoff treatment

In 1994, Harveys Lake was identified as “impaired” by PADEP due to large algal blooms. In 2014, Harveys Lake was removed from the list of impaired waters. Project partners attribute the recovery of this lake to the stream restoration, urban runoff BMP implementation, and the use of in-lake nutrient reduction strategies.

The Harveys Lake Watershed Protection Plan Implementation Project proved that despite the lake being located in an urbanized watershed, it is possible to implement cost-effective green infrastructure and stormwater retrofit solutions capable of significantly decreasing pollutant loading to the lake.

To learn more about our lake and pond management services or schedule a consultation, visit: http://bit.ly/pondlake.

Green Infrastructure and Stormwater Utilities: Solutions to NJ’s Environmental Issues

Flooding, runoff, and storm surges, OH MY!

With increases in each of these occurring now, the imposition of green infrastructure and a stormwater utility fee are viable solutions to reducing their impacts. Plus, with the passing of the S-1073/A2694 bill in early 2019, the introduction of a stormwater utility became legal in New Jersey, making it the 41st state to do so.

On June 19, 2019, The Watershed Institute in Pennington, NJ held the “New Jersey Green Infrastructure & Stormwater Utilities Symposium” to address the environmental problems New Jersey faces and present solutions, including the stormwater utility. The event was geared for municipal officials, engineers, nonprofit leaders, and other interested parties, with an agenda full of expert speakers sharing insights and ideas on topics like the science of stormwater, New Jersey’s proposed stormwater rule changes, why green infrastructure and a stormwater utility fee matter, and possibilities for how to move New Jersey forward.

So, What is Green Infrastructure?

Brian Friedlich, the first presenter and a project manager for Kleinfelder, relayed that according to NJDEP, green infrastructure consists of “methods of stormwater management that reduce stormwater volume, flow, or characteristics by allowing the stormwater to infiltrate, be treated by vegetation or by soils, or be stored for use.” He also explained that green infrastructure can improve the environment and communities by providing community engagement, greening communities, addressing flooding, improving water quality by reducing CSOs, harvesting rainwater, increasing habitat for wildlife, and increasing property values.

After Brian’s presentation, a founding Principal of Princeton Hydro, Dr. Stephen Souza, now CEO of Clean Waters Consulting, urged that we should “turn down the volume,” when it comes to stormwater runoff. He explained that it is not enough to just manage peak flow of stormwater; we must also work to lower the volume of off-site stormwater discharge. So, how can you and your municipality do this? He offered six principles to designing successful green infrastructure projects:

  1. Treat stormwater as a resource
  2. Don’t make stormwater management an afterthought
  3. Attack the cause not the symptoms
  4. Turn your watershed inside out
  5. Think small to achieve big results
  6. Use nature as your model

Not only is successful implementation of green infrastructure important, but communal understanding of it may be more so. That is why Princeton Hydro partnered with New Jersey Future, Clark Caton Hintz, Rutgers Cooperative Extension Water Resources Program, FZ Creative, and municipal stakeholders to launch the New Jersey Green Infrastructure Municipal Toolkit. Filled with helpful information about green infrastructure, this free resource is extremely useful for gaining communal understanding, getting started, implementing nature-based stormwater solutions, and sustaining your program.

What is Stormwater and Why Should Municipalities Require a Utility Fee for It?

Before we get into why it is imperative for New Jersey municipalities to implement a stormwater utility fee, it is important to understand just what stormwater is, what it does, and how it affects New Jersey residents.

The name is pretty intuitive: stormwater is the water that comes from precipitation, whether that be rain, snow, or ice melt. With increasing levels of water from climate change impacts (i.e. storm surge, increased rainfall, sea level rise), stormwater management has become an issue for states all across the U.S., whether it’s an over abundance or lack thereof.

So, what’s happening in New Jersey? The stormwater infrastructure that is currently in place (storm drains, sewer piping, etc.) is aging and unable to effectively handle the amount of runoff that has been flowing through the region in recent years. This is causing increased nutrient runoff and flooding all over the state. And, with increasing global temperatures, this trend is likely to continue.

To combat these issues, New Jersey passed the S-1073/A2694 bill in January 2019, authorizing counties and municipalities, either separately or in combination with other municipalities, to begin implementing a stormwater utility fee to New Jersey residents.

The law itself states:

“Every sewerage authority is hereby authorized to charge and collect rents, rates, fees, or other charges for direct or indirect use or services of its stormwater management system. The stormwater service charges may be charged to and collected from the owner or occupant, or both, of any real property. The owner of any real property shall be liable for and shall pay the stormwater service charges to the sewerage authority at the time when and place where these charges are due and payable. The rents, rates, fees, and charges shall be determined in a manner consistent with the stormwater utility guidance manual created by the Department of Environmental Protection pursuant to section 24 of P.L.

Any stormwater service charge imposed pursuant to subsection a. of this section shall be calculated in a manner consistent with the guidance provided in the stormwater utility guidance manual created by the Department of Environmental Protection pursuant to section 24 of P.L.”

Essentially, this fee charges a chosen type of property owner within a given municipality or region a certain amount of money for the impervious area (mainly artificial structures like asphalt, concrete, stone, rooftops, etc. that water can’t seep through) they have on their property. Just how much that fee is and whether or not there’s a limit on the chargeable impermeable area are dependent on the government agency.

Since the impervious area blocks water from seeping into the ground, it becomes runoff and ends up in the stormwater drain. And, since New Jersey’s systems are growing old and less efficient, it makes sense to implement a fee for their use. Historically, general taxpayer dollars or legislative appropriations have been used to fund updates to aging infrastructure. Implementing a utility fee will create a consistent funding source to update and expand the current aging infrastructure so that flooding will occur less.

Other states, like neighboring Pennsylvania, have been proactive in addressing these impacts by implementing a stormwater utility fee. And, in Maryland, the state implemented a watershed restoration program and MS4 efforts that require stormwater utility fees. These initiatives have generated a job-creating industry boom that benefits engineers, contractors, and local DPWs. At the same time, Maryland’s program is improving the water quality in the Chesapeake Bay, and stimulating the tourism and the crabbing/fishing industry.

In relation to how urban cities are affected by stormwater, John Miller, the FEMA Mitigation Liaison, shared this helpful resource, “The Growing Threat of Urban Flooding: A National Challenge” during the symposium. It addresses the extent and consequences of urban flooding in the U.S., while exploring actions that can be taken to mitigate future flooding. Amongst other recommendations made, the research group encouraged Congress and state officials to “develop appropriate mechanisms at the federal, state, and local level to fund necessary repairs, operations, and upgrades of current stormwater and urban flood-related infrastructure.”

A stormwater utility should not only be reviewed in the context of cost, since it meets all three elements of a triple-bottom line: social, environmental, and financial. Other considerations are the fact that allowing stormwater utilities in New Jersey will create jobs, help reduce flood impacts, enhance water quality, improve our fisheries, and preserve our water-based tourism economy.

When it comes to green infrastructure, Princeton Hydro has been a leader in innovative, cost-effective, and environmentally sound stormwater management systems since its inception. Long before the term “green infrastructure” was part of the design community’s lexicon, the firm’s engineers were integrating nature-based stormwater management systems to fulfill such diverse objectives as flood control, water quality protection, and pollutant load reduction. And, Princeton Hydro has developed regional nonpoint source pollutant budgets for over 100 waterways. The preparation of stormwater management plans and design of stormwater management systems for pollutant reduction is an integral part of many of the firm’s projects. So, we are major proponents of implementing stormwater utilities and green infrastructure into our everyday lives.

Do you have questions regarding green infrastructure or stormwater utilities? Contact us here.

 

A Day in the Life of a Stormwater Inspector

Walking through a park isn’t always a walk in the park when it comes to conducting stormwater inspections. Our team routinely spots issues in need of attention when inspecting stormwater infrastructure; that’s why inspections are so important.

Princeton Hydro has been conducting stormwater infrastructure inspections for a variety of municipalities in the Mid-Atlantic region for a decade, including the City of Philadelphia. We are in our seventh year of inspections and assessments of stormwater management practices (SMPs) for the Philadelphia Water Department. These SMPs are constructed on both public and private properties throughout the city and our inspections focus on areas served by combined sewers. 

Our water resource engineers are responsible for construction oversight, erosion and sediment control, stormwater facilities maintenance inspections, and overall inspection of various types of stormwater infrastructure installation (also known as “Best Management Practices” or BMPs).

The throat of a sinkhole observed by one of our engineers while on site.

Our knowledgeable team members inspect various sites regularly, and for some municipalities, we perform inspections on a weekly basis. Here’s a glimpse into what a day of stormwater inspection looks like:

The inspector starts by making sure they have all their necessary safety equipment and protection. For the purposes of a simple stormwater inspection the Personal Protection Equipment (PPE) required includes a neon safety vest, hard hat, eye protection, long pants, and boots. Depending on the type of inspection, our team may also have to add additional safety gear such as work gloves or ear plugs. It is recommended that inspectors hold CPR/First Aid and OSHA 10 Hour Construction Safety training certificates. 

Once they have their gear, our inspection team heads to the site and makes contact with the site superintendent. It’s important to let the superintendent know they’re there so that 1) they aren’t wondering why a random person is perusing their construction site, and 2) in case of an emergency, the superintendent needs to be aware of every person present on the site.

Once they arrive, our team starts by walking the perimeter of the inspection site, making sure that no sediment is leaving the project area. The team is well-versed in the standards of agencies such as the Pennsylvania Department of Environmental Protection, the Pennsylvania Department of Transportation, the New Jersey Department of Environmental Protection, and local County Soil Conservation Districts, among others. These standards and regulations dictate which practices are and are not compliant on the construction site.

After walking the perimeter, the inspection team moves inward, taking notes and photos throughout the walk. They take a detailed look at the infrastructure that has been installed since the last time they inspected, making sure it was correctly installed according to the engineering plans (also called site plans or drainage and utility plans). They also check to see how many inlets were built, how many feet of stormwater pipe were installed, etc.

If something doesn’t look quite right or needs amending, our staff makes recommendations to the municipality regarding BMPs/SMPs and provides suggestions for implementation.

One example of an issue spotted at one of the sites was a stormwater inlet consistently being inundated by sediment. The inlet is directly connected o the subsurface infiltration basin. When sediment falls through the inlet, it goes into the subsurface infiltration bed, which percolates directly into the groundwater. This sediment is extremely difficult to clean out of the subsurface bed, and once it is in the bed, it breaks down and becomes silt, hindering the function of the stormwater basin.

To remedy this issue, our inspection team suggested they install stone around the perimeter of the inlet on three sides. Although this wasn’t in the original plan, the stones will help to catch sediment before entering the inlet, greatly reducing the threat of basin failure.

Once they’ve thoroughly inspected the site, our team debriefs the site superintendent with their findings. They inform the municipality of any issues they found, any inconsistencies with the construction plans, and recommendations on how to alleviate problems. The inspector will also prepare a Daily Field Report, summarizing the findings of the day, supplemented with photos.

In order to conduct these inspections, one must have a keen eye and extensive stormwater background knowledge. Not only do they need to know and understand the engineering behind these infrastructure implementations, they need to also be intimately familiar with the laws and regulations governing them. Without these routine inspections, mistakes in the construction and maintenance of essential stormwater infrastructure would go unnoticed. Even the smallest overlook can have dangerous effects, which is why our inspections team works diligently to make sure that will not happen.

Our team conducts inspections for municipalities and private entities throughout the Northeast. Visit our website to learn more about our engineering and stormwater management services.

 

Protecting Greenwood Lake’s Water Quality Through Stormwater Management

The summer is upon us and Lakes Appreciation Month is right around the corner, what better time to pay a visit to and learn more about the lakes in your area.

Princeton Hydro conducts work on lakes throughout the Northeast to preserve, protect and improve water quality and ecological health, ensuring that your community lakes can be enjoyed now and into the future. Today, we’re putting the spotlight on Greenwood Lake:

Greenwood Lake, a 7-mile-long interstate lake that straddles the border of New York and New Jersey, is a popular recreation spot for residents and tourists of both states. Considered to be one of the top bass fishing lakes in New Jersey, Greenwood Lake is abundant with largemouth and smallmouth bass, yellow perch, chain pickerel and catfish. The lake is also extensively used by residents for swimming and boating.

For over 35 years, Princeton Hydro’s scientists have worked with New Jersey, local governing municipalities, and the various environmental organizations involved with the protection of Greenwood Lake and its watershed. In the early 2000s, we developed a comprehensive Restoration Plan and a proactive monitoring program that we have used over the years to properly manage the lake and its watershed. The plan was developed for the Greenwood Lake Commission and the Township of West Milford with funding provided through the New Jersey Department of Environmental Protection’s Nonpoint Source 319(h) Program. The Restoration Plan focuses heavily on the implementation of various types of stormwater best management practices (BMPs) to help reduce the influx of sediment and nutrients into the lake. We track the positive effects and benefits achieved through these stormwater projects by conducting both storm-event based and in-lake water quality monitoring.

The goal of the stormwater-based efforts is to ensure the lake’s total phosphorus (TP) load is systematically reduced in accordance with the lake’s established Total Maximum Daily Load (TMDL). The TMDL is a regulatory term in the U.S. Clean Water Act, that identifies the maximum amount of a pollutant (in this case phosphorus) that a waterbody can receive while still meeting water quality standards. Princeton Hydro was instrumental in developing the TMDL for Greenwood Lake. Phosphorus entering the lake from runoff is the primary driver of the lake’s eutrophication. The direct results of eutrophication are increases in the density of aquatic plants and nuisance algae. All this added productivity leads to reduced clarity, reductions in dissolved oxygen concentrations, and a number of other ecological impacts that compromise the quality, aesthetics, and use of the lake.

Last year, Princeton Hydro and the Greenwood Lake Commission, with input from the West Milford Environmental Commission, proposed an updated Watershed Implementation Plan (WIP) for the lake. Approved and funded by the NJ Highlands Council, the updated WIP includes a variety of components that build upon the original Restoration Plan and incorporate newly advanced stormwater management and Nonpoint Source Pollution (NPS) reduction technologies.

Belcher's Creek at Edgecumb and Glencross

The WIP includes in‐lake and stream monitoring; the assessment of the existing stormwater structures installed through grant‐based, watershed activities; and the identification of watershed-based projects that can be completed to support the Lake’s compliance with TMDL TP levels with a specific focus on the stormwater runoff produced by Belcher’s Creek, a major tributary to Greenwood Lake.

The WIP also includes the following nine minimum elements considered necessary by both NJDEP and USEPA for funding eligibility:

  1. Identify causes and sources of pollution
  2. Estimate pollutant loading into the watershed and the expected load reductions
  3. Describe management measures that will achieve load reductions and targeted critical areas
  4. Estimate amounts of technical and financial assistance and the relevant authorities needed to implement the plan
  5. Develop an information/education component
  6. Develop a project schedule
  7. Describe the interim, measurable milestones
  8. Identify indicators to measure progress
  9. Develop a monitoring component

While many of these elements have been indirectly addressed to varying degrees in the original Restoration Plan, in order to maximize Greenwood Lake’s opportunities to obtain State and Federal funding for the design and implementation of watershed control measures, the WIP now explicitly correlates the nine elements to eight specific deliverables, which are as follows:

  1. Conduct a detailed in‐lake and watershed‐based water quality monitoring program and compare the data to that collected in 2004 and 2005 to document changes or shifts in water quality.
  2. Meet with the Township of West Milford, Passaic County and other stakeholders to
    inventory recently completed BMPs and other watershed management measures.
  3. Conduct a field‐based evaluation of the stormwater project completed since the original 319‐grant funded Restoration Plan.
  4. Conduct site assessments to identify other potential stormwater/watershed BMP projects.
  5. Conduct a field assessment of the Belchers Creek Corridor to identify potential Nonpoint Source Pollution Reduction Projects.
  6. Assemble the WIP with all the 9 elements fully satisfied.
  7. Schedule and implement stakeholder and public meetings to evaluate project status.
  8. Submit of final version of WIP to the NJDEP and present the findings and recommendations to the public.

This project was initiated in September 2018 and is projected for completion by September 2019. The Greenwood Lake Commission, serves as the inter‐State steward of the Greenwood Lake watershed, and is working closely with Princeton Hydro and the watershed stakeholders (Township of West Milford, Passaic County and others), to ensure the WIP is a holistic document.

Stay tuned for more Greenwood Lake updates as the WIP progresses. For more information about Princeton Hydro’s lake management projects and capabilities, or to discuss your project needs and goals, please contact us.

Some of the photos utilized in this blog are from The Village of Greenwood Lake.

June 5: Restoration Ecology Course at Rutgers University

Join us on Wednesday, June 5 for a One-Day Environmental Training Course

Rutgers Office of Continuing Professional Education is offering a one-day class that explores the utilization of mitigation and sustainable design techniques to reduce stormwater impacts and increase storm resiliency.

The course, designed for ecologists, engineers, planners, and landscape architects involved in the recovery of impacted river, lake, riparian, wetland, and coastal environments, draws heavily upon real-world examples of restoration ecology in practice. This interactive course focuses specifically on the multi-disciplined recovery of degraded, damaged, or impaired ecosystems.

Dr. Stephen Souza, a founding principal of Princeton Hydro and owner of Clean Waters Consulting, LLC, is the main instructor and course coordinator. The course curriculum includes lessons from Dr. Souza and a number of experts from the Princeton Hydro team, including:

  • “River Restoration – Large Scale Dam Removal” lead by President Geoffrey Goll, P.E.
  • “Restoration of Tidal Ecosystems – The Creation of the Bayonne Golf Club” lead by Vice President Mark Gallagher
  • “Green Infrastructure and Coastal Resiliency” lead by Senior Project Manager & Environmental Scientist Christiana Pollack, GISP, CFM
  • “Does Green Infrastructure Mitigate Flooding?” lead by Dr. Souza

Course instruction will also be provided by John Miller, P.E., CFM, CSM, FEMA Mitigation Liaison; Nathaniel Burns, Langan Engineering Project Landscape Architect; and Capt. Al Modjeski, American Littoral Society Habitat Restoration Program Director.

In addition to 0.7 Rutgers CEUs, the course also awards participants with professional credits, including:

  • Landscape Architecture Continuing Education System (LA CES): 7.25 hours
  • NY Landscape Architects: 10.5 hours CL; 10 hours EA
  • NJ Public Health Continuing Education Contact Hours: 7.5
  • NJ Licensed Water & Wastewater Operators: 7 TCHs
  • NJ Certified Public Works Managers (CPWM): 5 Technical, 2 Government
  • NJ Licensed Professional Engineers: 6 Continuing Professional Competency (CPC) credits
  • NY Professional Engineers: 7 hours
  • NJ Licensed Site Remediation Professionals (LSRP): 6.5 Technical CEC’s

The course will be held on Wednesday, June 5 2019 from 8:30AM to 5:00PM at the Rutgers Continuing Education Center at the Atrium in Somerset, NJ. Register on or before May 22 to take advantage of a discounted early registration fee. Pre-registration is required. Continental breakfast and buffet lunch are provided at no additional cost.

Princeton Hydro is proud to partner with Rutgers Office of Continuing Professional Education and take part in this valuable continuing professional education course. We hope to see you there!

 

Urban Wetland Restoration to Yield Flood Protection for Bloomfield Residents

As part of the Third River Floodplain Wetland Enhancement Project,
a disturbed, flood-prone industrial site will be converted into a thriving public park.

Along the Third River and Spring Brook, two freshwater tributaries of the Passaic River, a disturbed industrial site is being transformed into 4.2 acres of wetlands, restoring the natural floodplain connection, enhancing aquatic habitat, and increasing flood storage capacity for urban stormwater runoff. The groundbreaking ceremony for this important ecological restoration project for Bloomfield Township took place last month.

“The Third River Floodplain Wetland Enhancement Project is a unique, creative solution that will transform a highly-disturbed, flood-prone, former industrial site into a thriving public park allowing for both passive and active recreational activities,” said Mark Gallagher, Vice President of Princeton Hydro. “By removing a little over four acres of upland historic fill in this densely developed area and converting it to a functioning floodplain wetland, the project will restore valuable ecological functions, increase flood storage capacity, and enhance wildlife habitat.”

Princeton Hydro is serving as the ecological engineer to Bloomfield Township for the Third River Floodplain Wetland Enhancement Project. Princeton Hydro’s scientists and engineers have assisted in obtaining grants, collected background ecological data through field sampling and surveying, created a water budget, completed all necessary permitting, and designed both the conceptual and final restoration plans. Additionally, Princeton Hydro will be conducting construction oversight during the implementation of this important urban wetland creation project.

The site includes 1,360 feet along the east bank of the Third River and 3,040 feet along the banks of the Spring Brook. These waterways are freshwater tributaries of the Passaic River and share a history of flooding above the site’s 100-year flood plain. The Third River, like many urban streams, tends to be the victim of excessive volume and is subjected to erosion and chronic, uncontrolled flooding. This green infrastructure project will re-establish the natural floodplain wetland and riparian plant communities, which will lead to a species-rich forest community through the removal of invasive species, setting the stage for native plants.

“Over 500 trees and shrubs will be planted in the new wetland with additional trees and shrubs being planted along Lion Gate Drive and in existing woodlands. The selected native plant species all provide important wildlife value such as providing fruit for migratory birds,” Gallagher explained. “We are excited to work with Bloomfield Township to design an urban restoration project that will both enhance the site’s ecological and flood storage value and provide accessibility to the community of Bloomfield.”

It is estimated that Phase One of the project, which includes the wetland construction and plantings, will be completed by September 1, 2019. The maintenance building, concession stand, ball field, etc., will be constructed as part of Phase Two.

“We are very excited to break ground on this exciting project that will have tremendous public benefits, like providing much-needed open space and lowering flood insurance rates for nearby residents and businesses,” said Bloomfield Township Mayor Michael Venezia. “By taking an underutilized parcel of land and turning it into beautiful park and waterfront space to be enjoyed by the public, we are fulfilling our commitment to preserving and enhancing open space. We would not have accomplished this without the efforts of Councilman Nick Joanow, who has advocated for this park for many years, Township Administrator Matthew Watkins, our excellent contractors and environmental experts, and I would like to thank them all. I also want to thank the Department of Environmental Protection and Freshwater Wetlands Mitigation Council for their important grant assistance to help us jump start this complex which will enrich the lives of Bloomfield residents for decades to come.”

NY/NJ Baykeeper has been vital in bringing the project to fruition, having served as an advocate for the project for the last 17 years.

“Lion’s Gate natural restoration is a legitimate all-in-one project that uses green infrastructure and smart planning to address the nested set of urban land use challenges, including: stormwater management, flooding, brownfield cleanup, natural habitat restoration, and the need for both more active playing fields and more passive greenfields,” said Greg Remaud, Baykeeper and CEO, NY/NJ Baykeeper.

Together, Bloomfield Township, Strauss and Associates, ARH, and Princeton Hydro secured $1.76 million in funding for this project from the New Jersey Freshwater Wetlands Mitigation Council and another several million dollars from NJDEP’s Office of Natural Resource Restoration.

To read more about our wetland restoration work, go here: http://bit.ly/PHwetland

 

NJ SPOTLIGHT OP/ED Addresses the Creation of Stormwater Utilities in New Jersey

NJ Spotlight recently published an Op/Ed piece co-authored by Association of New Jersey Environmental Commissions (ANJEC) Board of Trustees members John A. Thonet, P.E., P.P., and Dr. Stephen J. Souza, PhD.

The piece asserts the position that New Jersey needs stormwater utilities to provide a sustained source of local funding in order to improve and maintain stormwater infrastructure in communities throughout the state.

We’ve included an excerpt from the Op/Ed below:

NJ SPOTLIGHT OP-ED: NEW UTILITIES WOULD HELP NEW JERSEY FIGHT FLOODING AND POLLUTION

2018 will be one of the wettest years on record for the Garden State, and all that rain has resulted in frequent flooding, millions of dollars in damages, gridlocked traffic, impacted drinking water and polluted waterways.

The problem is daunting, but there is a solution. For decades, the state has provided comprehensive planning and regulations aimed at protecting the public from the flooding impacts of improperly and inadequately managed stormwater. These efforts have helped but failed to address all the social, economic and environmental impacts associated with stormwater runoff. Today, rather than continuing to use conventional “collect, detain and discharge” approaches to controlling runoff, the use of “green infrastructure” is proving to be a better alternative. It’s focused on reducing runoff at its source, through recharge, reuse and evapotranspiration, rather than just treating it as a “waste” or “nuisance” to get rid of as quickly as possible.

Green infrastructure measures include porous pavement, green roofs, rain barrels, rain gardens, bioretention basins and other techniques designed to capture rainwater and allow it to soak into the ground instead of concentrating and discharging it downstream. Additionally, the “green infrastructure” approach is far more attractive and provides ecological and community benefits that can’t be achieved with standard detention basins.

So, what’s the hold-up? The answer is the absence of a sustained source of local funding to implement and maintain new stormwater infrastructure, including green infrastructure, as well as to retrofit, upgrade or replace failing existing stormwater management facilities…

Click Here to Read the Complete Op/Ed

 

About the Op/Ed Authors: 

John A. Thonet, P.E., P.P., is the president of Thonet Associates, Inc, an environmental, planning and engineering consulting firm based in Pittstown, NJ.

Dr. Stephen J. Souza, PhD is the owner of Clean Waters Consulting, LLC, a water resource consulting firm based in Ringoes, NJ that provides consulting services to Princeton Hydro, of which Steve is one of the founding principals.

Part Two: Reducing Flood Risk in Moodna Creek Watershed

Photo of Moodna Creek taken from the Forge Hill Road bridge, New Windsor Post Hurricane Irene (Courtesy of Daniel Case via Wikimedia Commons)

This two-part blog series showcases our work in the Moodna Creek Watershed in order to explore common methodologies used to estimate flood risk, develop a flood management strategy, and reduce flooding.

Welcome to Part Two: Flood Risk Reduction and Stormwater Management in the Moodna Creek Watershed

As we laid out in Part One of this blog series, the Moodna Creek Watershed, which covers 180 square miles of eastern Orange County, New York, has seen population growth in recent years and has experienced significant flooding from extreme weather events like Hurricane Irene, Tropical Storm Lee, and Hurricane Sandy. Reports indicate that the Moodna Creek Watershed’s flood risk will likely increase as time passes.

Understanding the existing and anticipated conditions for flooding within a watershed is a critical step to reducing risk. Our analysis revealed that flood risk in the Lower Moodna is predominantly driven by high-velocity flows that cause erosion, scouring, and damage to in-stream structures. The second cause of risk is back-flooding due to naturally formed and man-made constrictions within the channel. Other factors that have influenced flood risk within the watershed, include development within the floodplain and poor stormwater management.

Now, let’s take a closer look at a few of the strategies that we recommended for the Lower Moodna Watershed to address these issues and reduce current and future flood risk:

Stormwater Management

Damage to Butternut Drive caused when Moodna Creek flooded after Hurricane Irene (Courtesy of Daniel Case via Wikimedia Commons)

Stormwater is the runoff or excess water caused by precipitation such as rainwater or snowmelt. In urban areas, it flows over sewer gates which often drain into a lake or river. In natural landscapes, plants absorb and utilize stormwater, with the excess draining into local waterways.  In developed areas, like the Moodna Creek watershed, challenges arise from high volumes of uncontrolled stormwater runoff. The result is more water in streams and rivers in a shorter amount of time, producing higher peak flows and contributing to flooding issues.

Pollutant loading is also a major issue with uncontrolled stormwater runoff. Population growth and development are major contributors to the amount of pollutants in runoff as well as the volume and rate of runoff. Together, they can cause changes in hydrology and water quality that result in habitat loss, increased flooding, decreased aquatic biological diversity, and increased sedimentation and erosion.

To reduce flood hazards within the watershed, stormwater management is a primary focus and critical first step of the Moodna Creek Watershed Management Plan. The recommended stormwater improvement strategies include:

  • Minimizing the amount of impervious area within the watershed for new development, and replacing existing impervious surfaces with planter boxes, rain gardens and porous pavement.
  • Utilizing low-impact design measures like bioretention basins and constructed-wetland systems that mimic the role of natural wetlands by temporarily detaining and filtering stormwater.
  • Ensuring the long-term protection and viability of the watershed’s natural wetlands.

The project team recommended that stormwater management be required for all projects and that building regulations ensure development does not change the quantity, quality, or timing of run-off from any parcel within the watershed. Recommendations also stressed the importance of stormwater management ordinances focusing on future flood risk as well as addressing the existing flooding issues.

Floodplain Storage

Floodplains are the low-lying areas of land where floodwater periodically spreads when a river or stream overtops its banks. The floodplain provides a valuable function by storing floodwaters, buffering the effect of peak runoff, lessening erosion, and capturing nutrient-laden sediment.

Communities, like the Moodna Creek watershed, can reduce flooding by rehabilitating water conveyance channels to slow down the flow, increasing floodplain storage in order to intercept rainwater closer to where it falls, and creating floodplain benches to store flood water conveyed in the channel.  Increasing floodplain storage can be an approach that mimics and enhances the natural functions of the system.

One of the major causes of flooding along the Lower Moodna was the channel’s inability to maintain and hold high volumes of water caused by rain events. During a significant rain event, the Lower Moodna channel tends to swell, and water spills over its banks and into the community causing flooding. One way to resolve this issue is by changing the grading and increasing the size and depth of the floodplain in certain areas to safely store and infiltrate floodwater. The project team identified several additional opportunities to increase floodplain storage throughout the watershed.

One of the primary areas of opportunity was the Storm King Golf Club project site (above). The team analyzed the topography of the golf course to see if directing flow onto the greens would alter the extent and reach of the floodplain thus reducing the potential for flooding along the roadways and properties in the adjacent neighborhoods. Based on LiDAR data, it was estimated that the alteration of 27 acres could increase floodplain storage by 130.5 acre-feet, which is equivalent to approximately 42.5 million gallons per event.

Land Preservation & Critical Environmental Area Designation

For areas where land preservation is not a financially viable option, but the land is undeveloped, prone to flooding, and offers ecological value that would be impacted by development, the project team recommended a potential Critical Environmental Area (CEA) designation. A CEA designation does not protect land in perpetuity from development, but would trigger environmental reviews for proposed development under the NY State Quality Environmental Review Act. And, the designation provides an additional layer of scrutiny on projects to ensure they will not exacerbate flooding within the watershed or result in an unintentional increase in risk to existing properties and infrastructure.

Conserved riparian areas also generate a range of ecosystem services, in addition to the hazard mitigation benefits they provide. Protected forests, wetlands, and grasslands along rivers and streams can improve water quality, provide habitat to many species, and offer a wide range of recreational opportunities. Given the co-benefits that protected lands provide, there is growing interest in floodplain conservation as a flood damage reduction strategy.


These are just a few of the flood risk reduction strategies we recommended for the Lower Moodna Creek watershed. For a more in-depth look at the proposed flood mitigation strategies and techniques, download a free copy of our Moodna Creek Watershed and Flood Mitigation Assessment presentation.

Revisit part-one of this blog series, which explores some of the concepts and methods used to estimate flood risk for existing conditions in the year 2050 and develop a flood management strategy.

Two-Part Blog Series: Flood Assessment, Mitigation & Management

For more information about Princeton Hydro’s flood management services, go here: http://bit.ly/PHfloodplain

Conservation Spotlight: Reducing Flood Risk and Restoring Wetlands in Jamaica Bay

Located in Queens, New York on the northern shore of Jamaica Bay, Spring Creek South contains approximately 237 acres of undeveloped land, including wetlands and 2.4 miles of coastline. The site is bounded by the Howard Beach residential neighborhood in Queens, a commercial area along Cross Bay Boulevard, the Belt Parkway, and Jamaica Bay. The northwest section of Spring Creek South is part of the National Park Service’s Gateway National Recreation Area, and is largely comprised of small patches of degraded tidal marsh and disturbed and degraded upland ecosystems.

On October 29, 2012, Hurricane Sandy drove a catastrophic storm surge into the New Jersey and New York coastlines. Spring Creek South and the surrounding community of Howard Beach experienced record flooding and damage to property and critical infrastructure. Storm tides caused damage and erosion along the shoreline and in the salt marsh area, degrading important habitat and leaving the site vulnerable to invasive species.

Hurricane Sandy Aftermath at Howard Beach, taken 10/30/2012 by Pam Andrade

The New York State Division of Homeland Security and Emergency Services (NYSDHSES) was awarded funding from FEMA’s Hazard Mitigation Grant Program to restore Spring Creek South. The U.S. Army Corps of Engineers (USACE) New York District, serving as project administrator, contracted Princeton Hydro to provide ecosystem restoration services. The goal of the project is to reduce future flood risk exposure while also protecting, restoring, and improving the quality and function of ecological systems; improving stormwater management and water quality; and enhancing the park’s visitor experience.

To achieve this goal, the project team is using an integrated approach that involves utilizing green infrastructure to create a natural barrier for the community and reduce the risks of coastal storms. Project activities include berm construction and the restoration of tidal marsh, creation of freshwater wetland forest, and creation of maritime shrub, forest, and grassland habitats, as well as stabilization of the existing shoreline.

On December 31, 2018, we completed Phase One of the project, which entails engineering design and preliminary permitting. More specifically, we’ve provided conceptual planning; analysis of subsurface soils for geotechnical properties and hazardous waste; coastal and freshwater wetland delineations; biological benchmarking analysis; and the development of sea level rise curves and two-dimensional hydrologic and hydraulic coastal modeling. As part of the hydrology study, we analyzed what the site could be expected to look like in 50 years due to climate changes and sea level rise. Our engineering design was also brought to 65% completion.

We also obtained permits, prepared the Environmental Assessment (EA), and oversaw the National Environmental Policy Act (NEPA) process. The EA received a “Finding of No Significant Impact” (FONSI) from FEMA, which means the environmental analysis and interagency review concluded that the project has no significant impacts on the quality of the environment.

Due to the complex nature of this project and its location, we are coordinating with a variety of different entities, including the local Howard Beach Community Board, the FAA (proximity to JFK International Airport), Port Authority, USACE, NOAA Fisheries, USFWS, USEPA, NYSDEC, NYC DEP, the National Park Service, HDR Engineering and WSP Engineering.

Phase Two of the project is the construction phase, which is expected to take about two years to complete. A key part of the Spring Creek South construction activities is the restoration of approximately 40 acres of tidal marsh, which is anticipated to improve water quality locally by stabilizing sediment, reducing erosion, and filtering dissolved particulate materials. The project team will restore existing coastline areas and install a salt marsh along the shoreline. Planted with native flora, like Spartina alterniflora, a perennial deciduous grass found in intertidal wetlands, the coastal salt marsh will help to stabilize sediment. Additionally, removing invasive species like Phragmites australis from the area and replacing it with native plant species will increase the ability for native vegetation to colonize the site, improve vegetative diversity, and reduce fire risk in the park.

A forested wetland area and berm will also be created in order to provide the surrounding communities with natural shields and buffers to future storms. The berm, with an elevation of 19 feet (NAVD88), will help to manage the risk of storm surge flooding caused by coastal storms. The forested wetland area will also provide improved stormwater runoff storage, naturally filter stormwater, and, via flap gates, direct its flow toward Jamaica Bay, away from residential and commercial properties.

These measures will help to dissipate wind and wave energy, increase shoreline resilience, improve stormwater management at the site, and create habitat that increases the ecological value and biodiversity at the site, while providing resilience benefits. Restoration activities will benefit vulnerable and rare ecological communities by producing localized environmental enhancements, including improving water quality and creating and restoring habitat. The project also increases opportunities for recreational uses such as wildlife viewing/photography, fishing, and nature study.

Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of wetland rehabilitation projects. To learn more about some of our ecosystem restoration and enhancement services, visit: bit.ly/PHwetland.

 

Barnegat “Clean Water, Beautiful Bay” Project wins Governor’s Environmental Excellence Award

The American Littoral Society was awarded the Governor’s Environmental Excellence Award in the Water Resources category this year for their Clean Water, Beautiful Bay projects in Barnegat Bay.

According to the Barnegat Bay Partnership, over 33% of the Barnegat Bay watershed has been altered to urban land cover. The construction of communities, roads and business has greatly increased the total amount of impervious surfaces in the watershed. With the added impervious cover has come a steady increase in the amount of nutrients, sediment, pathogens and other contaminants transported into the Bay by runoff. This accelerated the degradation of the Bay’s water quality and triggered changes to the Bay’s ecology.

Recognizing the importance of the Barnegat Bay, the American Littoral Society proposed green infrastructure measures to decrease runoff volume and nutrient loading to the bay and its tributaries.  Princeton Hydro was contracted by American Littoral Society to design four projects and provide oversight on the construction of the bioretention basins, rain gardens, porous pavement, etc. The projects were funded by the largest 319 grant ever administered by the NJDEP, totaling around $1 million. The project aimed to:

  1. Improve the water quality of Barnegat Bay by reducing the influx of nitrogen and other pollutants originating from the Long Swamp Creek and Lower Toms River watersheds. And, therefore, improve the water quality of both Long Swamp Creek and Lower Toms River, thus moving them closer to removal from the NJDEP’s 303D list of impaired waters.
  2. Demonstrate that relatively low-cost, stormwater system retrofits are capable of decreasing runoff volume, increasing stormwater recharge, and removing nutrients, and can be effectively implemented in even highly developed watersheds.
  3. Educate the public, elected and appointed officials and public work personnel of the types and benefits of bioretention, biodetention and infiltration stormwater management techniques.

From our team, Dr. Steve Souza and Paul Cooper worked to develop a unique Scoring Matrix for the selection of best management practices for retrofit projects. They have been asked several times to present on the matrix and demonstrate how to beneficially utilize it. In addition to design, Princeton Hydro participated in much of the public outreach for these projects, including giving presentations, leading workshops, and helping high school students plant vegetation around their school.

RWJ Barnabas Community Medical Center Educational Sign

According to NJDEP, the Clean Water, Beautiful Bay projects were successful in reducing flooding in a private residential homeowner community, improving a stormwater basin and public open space area at a hospital, introducing golf course staff and golfers to environmentally friendly golf course management practices, and engaging high school students in planting projects on school property.  The projects demonstrated that green infrastructure construction projects can reduce flooding and water pollution at business, community, school and public recreation locations, and can be publicly accepted and valued for the environmentally protective and restorative benefits they provide to Barnegat Bay.

Last year, the American Littoral Society’s Barnegat Bay Green Infrastructure Project was named “Project of the Year” by The American Society of Civil Engineers Central Jersey Branch.

For more information on Princeton Hydro’s green infrastructure and stormwater management services, please visit: bit.ly/stormwatermgmt