Ecological Uplift in an Urban Setting

The City of Elizabeth, the fourth most populous in New Jersey, is not exactly the first place that comes to mind when envisioning a wild landscape. This bustling urban area is well known for its Port Newark-Elizabeth Marine Terminal and the Philips 66 Bayway Refinery, and sits at the intersection of several major roadways like the NJ Turnpike and the Goethals Bridge. The landscape, which was once teeming with dense wetlands and associated habitats, is now heavily urbanized with a vast mix of residential, commercial, and industrial properties. The largely channelized Elizabeth River courses through the city for 4.2 miles before draining into the Arthur Kill waterway. However, in this 14-square mile city, native flora and fauna are taking root again thanks to ecological restoration and mitigation efforts.

Urban landscapes like Elizabeth can pose significant challenges for restoration efforts, but they also provide an array of opportunity for significant ecological uplift.

In 2004, Princeton Hydro was retained to restore an 18-acre site adjacent to the Elizabeth Seaport Business Park, which is located in an area that was once part of a large contiguous wetland system abutting Newark Bay. The site was comprised of a significantly disturbed mosaic of wetland and upland areas and a monoculture of Phragmites australis, also known as Common Reed, on historic fill. Historic fill consists of non-native material, historically placed to raise grades, and typically contains contaminated material not associated with the operations of the site on which it was placed.

The highly invasive Phragmites australis had overtaken most of the wetland areas, and the upland woodland areas only contained four tree species, mostly Eastern Cottonwood, with very low wildlife value. The 18-acre site had huge potential but was significantly degraded and was being vastly underutilized. Overall, the mitigation plan focused on the enhancement of existing wetland and transition areas to increase the area’s wildlife value through the establishment of a more desirable, diverse assemblage of native species subsequent to eradication of non-native-invasive species.

2005 (Before Plantings)
2019
In 2004, Prologis hired Princeton Hydro to restore an 18-acre area adjacent to the Elizabeth Seaport Business Park, which a significantly disturbed and degraded mosaic of wetland and upland areas. This project serves as an example of how degraded urban areas can be successfully rehabilitated and the land’s natural function restored and enhanced.

The freshwater wetland aspect of the mitigation plan, which included inundated emergent, emergent, and forested habitat, was designed to be a combination of wetland creation (2.40 acres) and enhancement (8.79 acres), emphasizing the establishment of more species rich wetlands in order to increase biodiversity and improve the site’s wildlife food value.

The upland forest aspect of the mitigation plan involved the enhancement of 5.40 acres and creation of 1.45 acres of upland forest to foster the development of a species rich and structurally complex upland forest. The upland areas targeted for enhancement/creation consisted of areas where woody vegetation was lacking or forested areas that were dominated by eastern cottonwood.

2008
2019
The 18-acre site in Elizabeth, NJ had huge potential but was significantly degraded and was being vastly underutilized. The mitigation plan emphasized the establishment of more species rich wetlands in order to increase biodiversity and improve the site’s wildlife habitat value.

The project team worked to remove Phragmites australis from the site utilizing a combination of herbicide and mechanical removal techniques. Once the Phragmites australis was cleared, the team installed 27,000 two-inch native herbaceous plant plugs in the wetland portions of the mitigation site, and 2,705 native trees/shrubs throughout the site.

In order to ensure the continued success of the mitigation project, monitoring is regularly conducted at the site. A monitoring report conducted at the end of 2019 revealed a plethora of well-established habitat areas, a diverse community of plant and tree species, and a thriving, highly-functional landscape.

2004 (Before Plantings)
september 2019
In 2004, before the restoration work began, the site consisted of degraded Phragmites australis dominated wetlands and an urban woodland area dominated by Eastern cottonwood. The planting component of the mitigation project commenced in 2015, and the installation of all woody plant material began Fall 2015 and was completed in Fall 2016. The 2019 Monitoring Report revealed the plantings are well-established and the area is thriving.

Presently, the Elizabeth Seaport Business Park Mitigation Site boasts a variety of productive wildlife habitats that are rare in a highly urbanized setting and provides valuable ecosystem services, including sediment retention and roosting, foraging, and nesting opportunities for both resident and migratory bird species with over 150 bird species identified within the mitigation site.

2008
2019
The Elizabeth Seaport Business Park site was comprised of a monoculture of Phragmites australis, also known as Common Reed. The mitigation plan focused on enhancing the existing wetland by eradicating non-native-invasive plant species, like Phragmites, and establishing more diverse population of productive, native species with high ecological value.

This project serves as an example of how degraded urban areas can be successfully rehabilitated and the land’s natural function restored and enhanced.  If you’d like to learn more about this project from our Natural Resources Senior Project Manager Michael Rehman, check out the video of his presentation at the 2020 Delaware Wetlands Conference below.

We’re at the Delaware Wetlands Conference and our Senior Project Manager, Michael Rehman, is presenting on a successful urban wetland restoration in Elizabeth, NJ.

Posted by Princeton Hydro on Thursday, January 30, 2020

 

If you’re interested in learning more about our wetland restoration and mitigation services, go here!

Managing Invasive Phragmites and Restoring Natural Wetland Habitat

Non-native Phragmites australis, also known as Common Reed, is a species of perennial grass found across North America, especially along the Atlantic coast, in wetlands, riparian areas, shorelines, and other wet areas like roadside ditches and drainage basins. This aggressively invasive grass can grow up to 20 feet tall, in dense groupings, and tends to spread rapidly, quickly colonizing disturbed wetlands.

Once established, the invasive plant forms a monoculture with a dense mat, outcompeting native vegetation, lowering the local plant biodiversity, and displacing native animals. These landscape changes impair the natural function of the marsh ecosystem by altering its elevations and tidal reach. A higher, drier marsh leads to less vigorous growth of native salt marsh vegetation, allowing Phragmites australis to gain a stronger foothold and continue to take over.

USDA NRCS Plants Database phragmites illustrationPhragmites australis can also eliminate small, intertidal channels and obliterate pool habitat that offers natural refuge and feeding grounds for invertebrates, fish, and birds. The spread of invasive Phragmites australis also has negative impacts on land aesthetics and outdoor recreation by obscuring views and restricting access. And, each Fall, when Phragmites australis die off, the large concentrations of dry vegetation increase the risk of fast-spreading fires near highly populated residential and commercial areas.

Over the last century, there has been a dramatic increase in the spread of Phragmites australis, partly due to an increase in residential and commercial development that resulted in disturbances to wetlands. According to the U.S. Fish and Wildlife Service, the rapid spread of Phragmites australis in the 20th century can also be attributed to the construction of railroads and major roadways, habitat disturbance, shoreline development, pollution, and eutrophication.

Princeton Hydro has worked in areas throughout the East Coast to address and properly manage Phragmites australis in order to restore natural habitats and enhance plant diversity, wildlife habitat, and water quality. Two recent projects include the restoration of John A. Roebling Memorial Park in Hamilton and Pin Oak Forest Conservation Area in Woodbridge, New Jersey.

John A. Roebling Memorial Park

Mercer County’s John A. Roebling Memorial Park is home to the northernmost freshwater tidal marsh on the Delaware River, the Abbott Marshlands, an area containing valuable habitat for many rare species. Unfortunately, the area experienced a significant amount of loss and degradation, partially due to the introduction of the invasive Phragmites australis.

For Mercer County Park Commission, Princeton Hydro put together a plan to reduce and control the Phragmites australis, in order to increase biodiversity, improve recreational opportunities, and enhance visitor experience at the park. This stewardship project replaced the Phragmites australis with native species in order to reduce its ability to recolonize the marsh.

By Spring of this year, the team expects to see native species dominating the landscape from the newly exposed native seed bank with minimal Phragmites australis growth.

Pin Oak Forest Conservation Area

The Pin Oak Forest Conservation Area is a 97-acre tract of open space that contains an extremely valuable wetland complex at the headwaters of Woodbridge Creek. The site is located in a heavily developed landscape of northern New Jersey. As such, the area suffered from wetland and stream channel degradation, habitat fragmentation, ecological impairment, and decreased biodiversity due to invasive species, including Phragmites australis.

The site was viewed as one of only a few large-scale freshwater wetland restoration opportunities remaining in this highly developed region of New Jersey. A dynamic partnership between government agencies, NGOs, and private industry, was formed to restore the natural function of the wetlands complex, transform the Pin Oak Forest site into thriving habitat teeming with wildlife, and steward this property back to life.

This award-winning restoration project converted over 30 acres of degraded freshwater wetlands, streams and disturbed uplands dominated by invasive species into a species-rich and highly functional headwater wetland complex. The resulting ecosystem provides valuable habitat for wildlife including the state-threatened Black-crowned Night-heron and Red-headed Woodpecker. Biodiversity was also increased through invasive species management, which allowed establishment of native plants such as pin oak, swamp white oak, marsh hibiscus, and swamp rose. The restored headwater wetland system provides stormwater management, floodplain storage, enhanced groundwater recharge onsite, and surface water flows to Woodbridge Creek, as well as public hiking trails, all benefiting the town of Woodbridge.

Managing and Monitoring Phragmites

Scientific field research continues to be conducted in order to identify the best way(s) to manage and control the spread of Phragmites australis. Depending on the landscape and how established the Phragmites australis population is, there are several different methods that can be effective in reducing Phragmites australis infestations in order to allow for the regeneration of native wetland plant communities and protect fish and wildlife habitat.

Recently, a group of more than 280 scientists, resource managers and policy professionals gathered together at the Hudson River Estuary Program’s (HEP) annual conference to explore how natural and nature-based solutions (i.e. building living shorelines, enhancing tidal wetlands and stream corridors, and conserving vulnerable floodplains) can be used as critical tools for addressing the impacts of climate change while also protecting and enhancing critical habitat.

The conference included six interactive workshops and dynamic panel discussions. Christiana Pollack, GISP, CFM of Princeton Hydro, Terry Doss of New Jersey Sports and Exposition Authority, Kip Stein from New York City Parks, and Judith Weis of Rutgers lead a panel discussion, moderated by Lisa Baron from U.S. Army Corps Engineers, on “The Yin and Yang of Estuarine Phragmites Management” to share lessons learned over many years of combating invasive species, including how sea level rise is changing minds and techniques.

Together, representing decades of experience in Phragmites australis management and research, these experts presented the evolving nature of restoration for this habitat type, common control/management methodologies, and longterm management and monitoring strategies for this reed and other invasive species. During the panel discussion, Christiana made specific mention of the Roebling Park project as one example of successful strategies in action.

If you’re interested in learning more and seeing photos from a few recent Phragmites australis management projects, click below for a free download of Christiana’s full presentation.

Through a combination of prevention, early detection, eradication, restoration, research and outreach, we can protect our native landscapes and reduce the spread of invasive species. Learn more about our invasive species removal and restoration services.

 

Enjoy Your Labor Day Nature Adventures Responsibly

Seven Tips for Environmentally-Friendly Outdoor Fun

Labor Day is right around the corner! Many people will soon be packing up the car with fishing gear and heading to their favorite lake for a fun-filled weekend.

As biologists, ecologists, environmentalists, and outdoor enthusiasts, all of us at Princeton Hydro fully enjoy getting outside and having fun in nature. We also take our responsibility to care for and respect our natural surroundings very seriously. We play hard and work hard to protect our natural resources for generations to come.

These seven tips will help you enjoy your Labor Day fishing, boating, and outdoor adventures with minimal environmental impact:

  • Before you go, know your local fishing regulations. These laws protect fish and other aquatic species to ensure that the joys of fishing can be shared by everyone well into the future.

  • Reduce the spread of invasive species by thoroughly washing your gear and watercraft before and after your trip. Invasives come in many forms – plants, fungi, and animals – and even those of microscopic size can cause major damage.

  • Stay on designated paths to avoid disrupting sensitive and protected areas, like wetlands, shorelines, stream banks, and meadows. Disturbing and damaging these sensitive areas can jeopardize the health of the many important species living there.

  • Exercise catch and release best practices. Always keep the health of the fish at the forefront of your activities by using the right gear and employing proper techniques. Get that info by clicking here.

  • Use artificial lures or bait that is native to the area you’re fishing in. Live bait that is non-native can introduce invasive species to water sources and cause serious damage to the surrounding environment.

  • Plan ahead and map your trip. Contact the office of land management to learn about permit requirements, area closures and other restrictions. Use this interactive map to find great fishing spots in your area, the fish species you can expect to find at each spot, nearby gear shops, and more!

Armed with these seven tips, you can now enjoy your weekend while feeling rest assured that you’re doing your part to protect the outdoor spaces and wild places we all love to recreate in! Go here to learn about some of the work Princeton Hydro does to restore and protect our natural resources.

120903 Dock
“Respect nature and it will provide you with abundance.”

–compassionkindness.com

Managing Urban Stormwater Runoff and Revitalizing Natural Habitat at Harveys Lake

Measuring 630+ acres, Harveys Lake, located in Luzerne County, Pennsylvania, just northeast of Wilkes-Barre, is the largest natural lake (by volume) within the Commonwealth of Pennsylvania, and is one of the most heavily used lakes in the area. It is classified as a high quality – cold water fishery habitat (HQ-CWF) and is designated for protection under the classification.

Since 2002, The Borough of Harveys Lake and the Harveys Lake Environmental Advisory Council  has worked with Princeton Hydro on a variety of lake management efforts focused around maintaining high water quality conditions, strengthening stream banks and shorelines, and managing stormwater runoff.

Successful, sustainable lake management requires identifying and correcting the cause of eutrophication as opposed to simply reacting to the symptoms of eutrophication (algae and weed growth). As such, we collect and analyze data to identify the problem sources and use these scientific findings to develop a customized management plan that includes a combination of biological, mechanical, and source control solutions. Here are some examples of the lake management strategies we’ve utilized for Harveys Lake:

 

Floating Wetland Islands

Floating Wetland Islands (FWIs) are an effective alternative to large, watershed-based natural wetlands. Often described as self-sustaining, FWIs provide numerous ecological benefits. They assimilate and remove excess nutrients, like nitrate and phosphorous, that could fuel algae growth; provide habitat for fish and other aquatic organisms; help mitigate wave and wind erosion impacts; and provide an aesthetic element. FWIs are also highly adaptable and can be sized, configured, and planted to fit the needs of nearly any lake, pond, or reservoir.

Five floating wetland islands were installed in Harveys Lake to assimilate and reduce nutrients already in the lake. The islands were placed in areas with high concentrations of nutrients, placed 50 feet from the shoreline and tethered in place with steel cables and anchored. A 250-square-foot FWI is estimated to remove up to 10 pounds of nutrients per year, which is significant when it comes to algae.

Princeton Hydro worked with the Harveys Lake Environmental Advisory Council and the Borough of Harveys Lake to obtain funding for the FWIs through the Pennsylvania Department of Environmental Protection (PADEP).

 

Streambank & Shoreline Stabilization

Harveys Creek

The shoreline habitat of Harveys Lake is minimal and unusual in that a paved road encompasses the lake along the shore with most of the homes and cottages located across the roadway, opposite the lake. In addition to the lake being located in a highly populated area, the limited shoreline area adds to the challenges created by urban stormwater runoff.

Runoff from urban lands and erosion of streambanks and shorelines delivers nutrients and sediment to Harveys Lake. High nutrient levels in the lake contribute to algal blooms and other water quality issues. In order to address these challenges, the project team implemented a number of small-scale streambank and inlet stabilization projects with big impacts.

The work included the stabilization of the streambank downstream for Harveys Lake dam and along Harveys Creek, the design and installation of a riparian buffer immediately along the lake’s shoreline, and selective dredging to remove sediment build up in critical areas throughout the watershed.

 

Invasive Species Management

Hydrilla (Hydrilla verticillata), an aggressively growing aquatic plant, took root in the lake in 2014 and quickly infected 250 acres of the lake in a matter of three years. If left untreated, hydrilla will grow to the water’s surface and create a thick green mat, which prevents sunlight from reaching native plants, fish and other organisms below. The lack of sunlight chokes out all aquatic life.

In order to prevent hydrilla from spreading any further, Princeton Hydro and SePRO conducted an emergency treatment of the impacted area utilizing the systemic herbicide Sonar® (Fluridone), a clay-based herbicide. SonarOne, manufactured by SePRO, blocks hydrilla’s ability to produce chloroplasts, which in turn halts the photosynthetic process. The low-concentration herbicide does not harm fish, wildlife or people using the lake. Surveys conducted after the treatment showed it was working – the hydrilla had turned white and was dying off. Additional Sonar treatments followed and efforts to eradicate hydrilla in the lake continue.

Dr. Fred Lubnow, our Director of Aquatic Programs, estimates complete eradication of the aquatic plant could take around five years. Everyone can do their part in preventing the spread of this and other invasive species. Boaters and lake users must be vigilant and remove all vegetation from the bottom of watercrafts and trailers.

 

Stormwater Best Management Practices (BMPs)

In 2009, Princeton Hydro developed a stormwater implementation plan (SIP) for Harveys Lake. The goal of the stormwater/watershed-based efforts was to reduce the lake’s existing annual total phosphorus load to be in full compliance with the established Total Maximum Daily Load (TMDL). This TMDL is related to watershed-based pollutant loads from total phosphorus (TP) and total suspended solids (TSS), which can contribute to algal blooms.

A number of structural urban runoff projects were implemented throughout the watershed. This includes the design and construction of two natural stream channel projects restoring 500 linear feet of tributaries and reducing the sediment and nutrient loads entering the lake. A series of 38 urban runoff BMPs, including nutrient separating devices and roadside infiltration, were installed in areas immediately adjacent to the lake to further reduce the loads of nutrients and other pollutants reaching the lake.

The photos below show a stormwater project that was completed in the Hemlock Gardens Section of the Watershed. Hemlock Gardens is a 28-acre section of land located in the southeastern portion of the watershed. It contains approximately 26 homes, has very steep slopes, unpaved dirt roads, and previously had no stormwater infrastructure in place.

Two structural stormwater BMPs were installed:

  • A nutrient separating baffle box, which utilizes a three-chamber basin with screens to collect leaf litter, grass clippings and trash
  • A water polishing unit that provides a platform for secondary runoff treatment

In 1994, Harveys Lake was identified as “impaired” by PADEP due to large algal blooms. In 2014, Harveys Lake was removed from the list of impaired waters. Project partners attribute the recovery of this lake to the stream restoration, urban runoff BMP implementation, and the use of in-lake nutrient reduction strategies.

The Harveys Lake Watershed Protection Plan Implementation Project proved that despite the lake being located in an urbanized watershed, it is possible to implement cost-effective green infrastructure and stormwater retrofit solutions capable of significantly decreasing pollutant loading to the lake.

To learn more about our lake and pond management services or schedule a consultation, visit: http://bit.ly/pondlake.

Four Ways Climate Change Can Affect Your Lake

The Local Effects of Climate Change Observed Through our Community Lakes

Climate change is an enormous concept that can be hard to wrap your head around. It comes in the form of melting ice caps, stronger storms, and more extreme seasonal temperatures (IPCC, 2018). If you’re an avid angler, photographer, swimmer, boater, or nature enthusiast, it’s likely that because of climate change you’ll bear witness to astonishing shifts in nature throughout the greater portion of your lifetime. This is especially true with respect to lakes.

2015-07-07-10-01-20

Lakes are living laboratories through which we can observe the local effects of climate change in our own communities. Lake ecosystems are defined by a combination of various abiotic and biotic factors. Changes in hydrology, water chemistry, biology, or physical properties of a lake can have cascading consequences that may rapidly alter the overall properties of a lake and surrounding ecosystem. Most of the time the results are negative and the impacts severe.

“Managing loads of phosphorous in watersheds is even more important as the East Coast becomes increasingly warmer and wetter thanks to climate change,” said Dr. Fred Lubnow, Director of Aquatics in a recent NJ.com interview. “Climate change will likely need to be dealt with on a national and international scale. But local communities, groups, and individuals can have a real impact in reducing phosphorous levels in local waters.”

Recognizing and monitoring the changes that are taking place locally brings the problems of climate change closer to home, which can help raise awareness and inspire environmentally-minded action.

We put together a list of four inter-related, climate change induced environmental impacts that can affect lakes and lake communities:

1. Higher Temperatures = Shifts in Flora and Fauna Populations

The survival of many lake organisms is dependent on the existence of set temperature ranges and ample oxygen levels. The amount of dissolved oxygen (DO) present in a lake is a result of oxygen diffusion from the atmosphere and its production by algae and aquatic plants via photosynthesis. An inverse relationship exists between water temperature and DO concentrations. Due to the physical properties of water, warmer water holds less DO than cooler water.

This is not good news for many flora and fauna, such as fish that can only survive and reproduce in waters of specific temperatures and DO levels. Lower oxygen levels can reduce their ability to feed, spawn and survive. Populations of cold water fish, such as brown trout and salmon, will be jeopardized by climate change (Kernan, 2015).

358-001-carp-from-churchvilleAlso, consider the effects of changing DO levels on fish that can tolerate these challenging conditions. They will thrive where others struggle, taking advantage of their superior fitness by expanding their area of colonization, increasing population size, and/or becoming a more dominant species in the ecosystem. A big fish in a little pond, you might say. Carp is a common example of a thermo-tolerant fish that can quickly colonize and dominate a lake’s fishery, in the process causing tremendous ecological impact (Kernan, 2010).

2. Less Water Availability = Increased Salinity

Just as fish and other aquatic organisms require specific ranges of temperature and dissolved oxygen to exist, they must also live in waters of specific salinity. Droughts are occurring worldwide in greater frequency and intensity. The lack of rain reduces inflow and higher temperatures promote increased evaporation. Diminishing inflow and dropping lake levels are affecting some lakes by concentrating dissolved minerals and increasing their salinity.

Studies of zooplankton, crustaceans and benthic insects have provided evidence of the consequences of elevated salinity levels on organismal health, reproduction and mortality (Hall and Burns, 2002; Herbst, 2013; Schallenberg et al., 2003). While salinity is not directly related to the fitness or survival rate of all aquatic organisms, an increase in salinity does tend to be stressful for many.

3. Nutrient Concentrations = Increased Frequency of Harmful Algal Blooms

Phosphorus is a major nutrient in determining lake health. Too little phosphorus can restrict biological growth, whereas an excess can promote unbounded proliferation of algae and aquatic plants.

before_strawbridgelake2If lake or pond water becomes anoxic at the sediment-water interface (meaning the water has very low or completely zero DO), phosphorus will be released from the sediment. Also some invasive plant species can actually “pump” phosphorus from the sediments and release this excess into the water column (termed luxurious uptake). This internally released and recycled sedimentary phosphorus can greatly influence lake productivity and increase the frequency, magnitude and duration of algae blooms. Rising water temperatures, declining DO and the proliferation of invasive plants are all outcomes of climate change and can lead to increases in a lake’s phosphorus concentrations and the subsequent growth and development of algae and aquatic plants.

Rising water temperatures significantly facilitate and support the development of cyanobacteria (bluegreen algae) blooms. These blooms are also fueled by increasing internal and external phosphorus loading. At very high densities, cyanobacteria may attain harmful algae bloom (HAB) proportions. Elevated concentrations of cyanotoxins may then be produced, and these compounds seriously impact the health of humans, pets and livestock.

rain-garden-imagePhosphorus loading in our local waterways also comes from nonpoint sources, especially stormwater runoff. Climate change is recognized to increase the frequency and magnitude of storm events. Larger storms intensify the mobilization and transport of pollutants from the watershed’s surrounding lakes, thus leading to an increase in nonpoint source loading. Additionally, larger storms cause erosion and instability of streams, again adding to the influx of more phosphorus to our lakes. Shifts in our regular behaviors with regards to fertilizer usage, gardening practices and community clean-ups, as well as the implementation of green infrastructure stormwater management measures can help decrease storm-related phosphorus loading and lessen the occurrence of HABs.

4. Cumulative Effects = Invasive Species

A lake ecosystem stressed by agents such as disturbance or eutrophication can be even more susceptible to invasive species colonization, a concept coined “invasibility” (Kernan, 2015).

For example, imagine that cold water fish species A has experienced a 50% population decrease as a result of warming water temperatures over ten years. Consequently, the fish’s main prey, species B, has also undergone rapid changes in its population structure. Inversely, it has boomed without its major predator to keep it in check. Following this pattern, the next species level down – species B’s prey, species C – has decreased in population due to intense predation by species B, and so on. Although the ecosystem can potentially achieve equilibrium, it remains in a very unstable and ecologically stressful state for a prolonged period of time. This leads to major changes in the biotic assemblage of the lake and trickle-down changes that affect its recreational use, water quality and aesthetics.

• • •

Although your favorite lake may not experience all or some of these challenges, it is crucial to be aware of the many ways that climate change impacts the Earth. We can’t foresee exactly how much will change, but we can prepare ourselves to adapt to and aid our planet. How to start? Get directly involved in the management of your lake and pond. Decrease nutrient loading and conserve water. Act locally, but think globally. Get out and spread enthusiasm for appreciating and protecting lake ecosystems. Also, check out these tips for improving your lake’s water quality.


References

  1. IPCC. “Summary for Policymakers. “Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.” World Meteorological Organization, Geneva, Switzerland, 32 pp. 2018.
  2. Hall, Catherine J., and Carolyn W. Burns. “Mortality and Growth Responses of Daphnia Carinata to Increases in Temperature and Salinity.” Freshwater Biology 47.3 (2002): 451-58. Wiley. Web. 17 Oct. 2016.
  3. Herbst, David B. “Defining Salinity Limits on the Survival and Growth of Benthic Insects for the Conservation Management of Saline Walker Lake, Nevada, USA.” Journal of Insect Conservation 17.5 (2013): 877-83. 23 Apr. 2013. Web. 17 Oct. 2016.
  4. Kernan, M. “Climate Change and the Impact of Invasive Species on Aquatic Ecosystems.” Aquatic Ecosystem Health & Management (2015): 321-33. Taylor & Francis Online. Web. 17 Oct. 2016.
  5. Kernan, M. R., R. W. Battarbee, and Brian Moss. “Interaction of Climate Change and Eutrophication.” Climate Change Impacts on Freshwater Ecosystems. 1st ed. Chichester, West Sussex, UK: Wiley-Blackwell, 2010. 119-51. ResearchGate. Web. 17 Oct. 2016.
  6. Schallenberg, Marc, Catherine J. Hall, and Carolyn W. Burns. “Consequences of Climate-induced Salinity Increases on Zooplankton Abundance and Diversity in Coastal Lakes”Marine Ecology Progress Series 251 (2003): 181-89. Inter-Research Science Center. Inter-Research. Web.

We Have a Winner! #LakesAppreciation Instagram Photo Contest

To celebrate North American Lake Management Society‘s Lakes Appreciation Month and encourage folks to get outside and appreciate their favorite lakes, we hosted an Instagram photo contest where participants had the chance to win $100.

The contest is now closed, we’ve selected a name at random, and…

We are very excited to announce the 2019 #LakesAppreciation contest winner!

A very big congratulations to Barbara Ann (@babsinski) who submitted the beautiful photo shown above of New Jersey’s Wesley Lake.

Thanks to everyone who got outside to show appreciation for their community lakes and participated in our contest. We received a variety of incredible photos from lake appreciators throughout the country. Here’s a sampling of the submissions we received:

In case you missed it, check out all of the contest details here:

Photo Contest! Show Your #LakesAppreciation on Instagram to Win $100

We hope you’ll join us next year in celebrating Lakes Appreciation Month! And, we encourage you to get outside and enjoy your community lakes all year long!

PHOTOS: #BagThePhrag Update from Roebling Park

We’re gearing up for another invasive species treatment event at Roebling Park!

Located in Hamilton Township, New Jersey, Mercer County’s John A. Roebling Memorial Park offers residents in the surrounding area a freshwater marsh with river fishing, kayaking, hiking, and wildlife-watching. The park contains the northernmost freshwater tidal marsh on the Delaware River, Abbott Marshland. Since the mid-1990s, many public and private partnerships have developed to help support the preservation of this important and significant marsh.

Our Field Operations Team was recently at the project site assessing present invasive species and re-evaluating access points for our treatment equipment. Check out these photos from their visit!

 

For more information on this marsh restoration project at John A. Roebling Park, visit our original project blog:

Restoring the Northernmost Freshwater Tidal Marsh on the Delaware River

Volunteers Spruce Up Rain Gardens at Clawson Park

Volunteers recently gathered together at Clawson Park in Ringoes, NJ to install native plants in the park’s large stormwater basin and overhaul two of the park’s rain gardens, removing invasive weeds and planting beneficial native species.

By definition, a rain garden is a shallow depression that is planted with deep-rooted native plants and grasses and positioned near a runoff source to capture rainwater. Rain gardens temporarily store rainwater and runoff, and filter the water of hydrocarbons, oil, heavy metals, phosphorous, fertilizers and other pollutants that would normally find their way to the sewer and even our rivers and waterways. They are a cost effective, attractive, and sustainable way to minimize stormwater runoff. They also help to reduce erosion, promote groundwater recharge, and minimize flooding. Planting native plants helps to attract pollinators and birds and naturally reduces mosquitoes by removing standing water thus reducing mosquito breeding areas.

Once a rain garden has been established, it is low maintenance and typically only requires occasional weeding to remove any invasive species that may have cropped up. The recent volunteer effort, lead by Jack Szczepanski, PhD, Senior Aquatics Scientist, was an important step in maintaining the health and native diversity of Clawson Park’s rain gardens.

An informational sign was also installed at the park. Designed by Princeton Hydro and installed by the East Amwell’s Department of Public Works, the sign describes the benefits of stormwater management and planting native species.

The park’s rain gardens and stormwater basins were originally designed and implemented by Princeton Hydro. Back in 2016, Eagle Scout Brandon Diacont had an idea to beautify Clawson Park and improve the park’s stormwater drainage issues. Princeton Hydro supported his vision by developing, permitting, and implementing a stormwater management project plan, which included the installation of multiple rain gardens throughout the park. In October of 2016, under the guidance of Princeton Hydro’s Landscape Designer Cory Speroff, MLA, ASLA, CBLP, a great group of volunteers gathered together and got to work bringing the project plan to life!

 Photos from 2016 volunteer event:

The Princeton Hydro team has designed and constructed countless stormwater management systems, including rain gardens in locations throughout the Eastern U.S. Click here for more information about our stormwater management services.

Thank you to Patsy Wang Iverson for providing the photos for this blog.

Photo Contest! Show Your #LakesAppreciation on Instagram to Win $100

Did you know that lakes contain about 90% of all surface water on Earth, not counting the oceans? That’s a whole lot to appreciate! And, luckily Lakes Appreciation Month is right around the corner!

July 1 marks the beginning of Lakes Appreciation Month. To encourage active participation in this month-long celebration, we’re holding a #LakesAppreciation Instagram photo contest where you can show us how you appreciate lakes! The winner will receive a $100 Amazon gift card.

CONTEST DETAILS & GUIDELINES: 

We want to see how YOU appreciate lakes! Send us photos of yourself actively participating in lake appreciation. Make sure to read the contest guidelines and conditions listed below. Need some inspiration? Scroll down for a list of suggestions to get your creativity flowing.

HOW TO ENTER THE CONTEST:
  • During the month of July, get out on your local lakes and participate in an appreciation activity.
  • Snap a photo of yourself doing a lake appreciation activity and post it to Instagram. You must use this hashtag #LakesAppreciation in your caption and tag Princeton Hydro (@princeton_hydro) in the photo.
    • In order for us to view your entry and your photo to be eligible for the contest, your account or post must be public.
    • Entries must be submitted as regular posts on your profile in order to qualify, but we also encourage you to add the picture to your story!
PHOTO GUIDELINES:

Each Post Must Include the Following:

  • A lake photo
  • You actively participating in an appreciation activity
  • A caption explaining what you did and why you appreciate your lakes!
  • #LakesAppreciation
  • @princeton_hydro tagged

One lucky winner will be randomly selected on August 1, 2019. The selected winner will receive a $100 gift card to Amazon. We’ll reach out to you via social media to collect your email and address for prize distribution. If the winner does not respond within five working days with the appropriate information, we will select another winner at random. Good luck, everyone!

GETTING STARTED:

Not sure how to get started? We’ve got you covered with a few ideas! Here are 10 ways you can show your lake appreciation:

  1. Relax on the lake: Whether you enjoy swimming, relaxing on the shoreline, sailing, canoeing, or kayaking, there are countless ways you can get outside and enjoy your community lakes.
  2. Go fishing: There’s nothing quite like relaxing on the shoreline with a fishing pole in your hand. Whether you’re there to catch and release or want to take your catches home, fishing is a great way to unwind. Go get your license (if you’re above the age of 16), check your local fishing rules and regulations, and cast a line in your local lake!
  3. new jersey ospreyBreak out the binoculars:  Lakes are great spots to go birding! Download the eBird app to track your bird sightings and see what fellow birders have reported in the area. Also, keep your eyes peeled for ospreys; New Jersey has an osprey conservation project with a map to track all the recent sighting reports.
  4. #TrashTag – Clean it up: One super quick and easy thing to do is clean up your local lake. You can get a small group of friends together or just go out on your own – no effort is too small! You’ll be able to immediately see the benefits of your actions when the trash-lined shore is clear. In addition to the Lakes Appreciation Photo contest tags, make sure you use #trashtag, a global viral cleanup challenge that shows people’s before and after pictures of their cleaning efforts so that you can be a part of that growing trend!
  5. Get involved with your local lake: You can help support your favorite lake by joining a lake or watershed association. As an organized, collective group, lake associations work toward identifying and implementing strategies to protect water quality and ecological integrity. Lake associations monitor the condition of the lake, develop lake management plans, provide education about how to protect the lake, work with the government entities to improve fish habitat, and much more.
  6. Remove invasive species: One of the most harmful elements of lake ecosystems are invasive species. So, by properly removing and discarding them, you can really help a lake to achieve its most desired state. A list of possible invasive species can be found here. For inspiration, check out this blog, written by our Senior Limnologist, Mike Hartshorne.
  7. Call on your inner-artist and draw a lake scene: All you need is a notepad, a pencil, and some spare time to let your imagination and creative skills take over. Does your lake have ducks? Are there people swimming? Is the sun rising or setting? Snap a picture of you with your art!
  8. Monitor and report algae blooms: With the BloomWatch App, you can help the U.S. Environmental Protection Agency understand where and when potential harmful algae blooms (HABs) occur. HABs have the potential to produce toxins that can have serious negative impacts on the health of humans, pets, and our ecosystems. Learn more and download the app.
  9. Join the “Secchi Dip-In” contest: The “Secchi Dip-In” is an annual citizen science  event created by NALMS during which lake-goers and associations across North America use a simple Secchi disk to monitor the transparency or turbidity of their local waterway. Visit their website to find out how to join their contest!
  10. Create your own experience: Write a sonnet about one of your lake experiences. Snap a picture of you sitting out by the water’s edge. Share your favorite lake memory on social media. Collect shells. Play a round of SpikeBall or CanJam in the surrounding area. With permission from the lake owner, plant some native species around the water. The possibilities are endless for lake appreciation!

Still having trouble thinking of an activity to do? Visit the NALMS’s website!

fishing on lake

ADDITIONAL CONTEST CONDITIONS:

By submitting an entry (Photograph) via Instagram to Princeton Hydro’s 2019 #LakesAppreciation Month Contest, you agree to the following: You represent and warrant that:

  • You are the sole and exclusive author and owner of the Photograph submitted and all rights therein; and
  • You have the full and exclusive right, power, and authority to submit the Photograph; and
  • You irrevocably grant Princeton Hydro a non-exclusive, worldwide, royalty-free, perpetual license to use the Photograph in any manner related to the Contest, including all associated use, reproduction, distribution, sublicense, derivative works, and commercial and non-commercial exploitation rights in any and all media now known or hereafter invented, including, but not limited to public relations purposes, posting on social media accounts, and/or for company marketing materials; and
  • No rights in the Photograph have been previously granted to any person, firm, corporation or other entity, or otherwise encumbered such that the prior grant would limit or interfere with the rights granted to Princeton Hydro herein; and
  • No part of your Photograph defames or invades the privacy or publicity rights of any person, living or decreased, or otherwise infringes upon any third party’s copyright, trademark or other personal or property rights.

Check out the details and winner of last year’s Lakes Appreciation Month contest:

WINNER! #LakesAppreciation Month Contest Results

:

 

 

If You Can’t Beat It, Eat It! How to Make Pesto from Garlic Mustard

By Kelsey Mattison, Marketing Coordinator 

Did you know? There’s a movement across the country, “Eat the Invaders,” working to fight invasive species, “one bite at at time.”  Here in the Northeast, we’ve got a handful of invasive plants, which native predators won’t eat, but are perfectly safe for humans. Even restaurants are popping up with menus designed around harvesting and cooking wild invasives.

Garlic mustard, a plant in the — you guessed it! — mustard family, may seem harmless, but is actually highly invasive and has become a widespread issue across most of the U.S. over the past century and a half. Originating in Europe and parts of Asia, experts believe it was brought to North America for medicinal and/or agricultural purposes in the mid 17th century.

The plant sprouts earlier than many native plants, and establishes quickly, often making it difficult for native plants to successfully establish for the season. It also releases compounds from its roots that prevent other native growth from sprouting. Many people pull and discard garlic mustard plants (but not in the compost pile!) to help control its spread. Some even hire professionals to remove the plant. Princeton Hydro has treated it on various project sites along with other invasive plants.

With high levels of vitamins A and C, zinc, carotenoids, and fiber, it’s a shame to let this invasive take up space in our trash. While invasive to landscapes, this wild plant is safe to eat, so long as it hasn’t been sprayed with any chemical treatments. Garlic mustard leaves can easily be added to sauces, salads, sautées, and more!

How to Harvest and Prepare Garlic Mustard for Cooking:
  1. Correctly identify the garlic mustard plant in your landscape — the rough-toothed leaves and garlic odor when crushed are giveaways.
  2. Assure that it has not been amended/treated by local landscapers or public works.
  3. Make sure there’s no poison ivy growing with it.
  4. Pull up the plant by the roots, making sure not to scatter the seeds as you pull.
  5. Bag the plant to avoid spreading the seeds in transport.
  6. When you’re ready to cook, cut off the leaves.
  7. Discard the stalk and roots in a sealed bag for disposal.
  8. Wash or soak the leaves in water and pat dry.
  9. Start cooking!
Recipe FOR GARLIC MUSTARD PESTO:

1 cup of garlic mustard leaves

2 cloves of garlic

1 cup of basil leaves

¼ cup of walnuts or pine nuts

1 cup of olive oil

½ cup of shredded Parmesan cheese

1 tablespoon of apple cider vinegar

1 tablespoon of maple syrup

1 lemon (squeeze in fresh juice to taste)

Before you start, make sure to thoroughly rinse the garlic mustard and pat dry.

Combine garlic mustard, basil, garlic, and pine nuts in a food processor or blender. Pulse until the ingredients are loosely chopped. Next, add the vinegar, maple syrup, and olive oil and blend until it is smooth. Finally, add the Parmesan cheese and lemon juice to taste. Blend again until smooth. Finally, add salt and pepper to taste.

Pour pesto over pasta, spread on toast, use as a marinade, or do whatever else you’d do with a delicious sauce!

For more information on other edible invasive species, visit Eat the Invaders‘ website.

Kelsey Mattison is Princeton Hydro’s Marketing Coordinator and a recent graduate of St. Lawrence University with a degree in English and environmental studies and a passion for environmental communication. Through her extracurricular work with various nonprofit organizations, she has developed expertise in social media management, content writing, storytelling, and interdisciplinary thinking. In her free time, Kelsey enjoys dancing of all sorts, going on long walks with her camera, and spending time with friends and family in nature.