If You Can’t Beat It, Eat It! How to Make Pesto from Garlic Mustard

By Kelsey Mattison, Marketing Coordinator 

Did you know? There’s a movement across the country, “Eat the Invaders,” working to fight invasive species, “one bite at at time.”  Here in the Northeast, we’ve got a handful of invasive plants, which native predators won’t eat, but are perfectly safe for humans. Even restaurants are popping up with menus designed around harvesting and cooking wild invasives.

Garlic mustard, a plant in the — you guessed it! — mustard family, may seem harmless, but is actually highly invasive and has become a widespread issue across most of the U.S. over the past century and a half. Originating in Europe and parts of Asia, experts believe it was brought to North America for medicinal and/or agricultural purposes in the mid 17th century.

The plant sprouts earlier than many native plants, and establishes quickly, often making it difficult for native plants to successfully establish for the season. It also releases compounds from its roots that prevent other native growth from sprouting. Many people pull and discard garlic mustard plants (but not in the compost pile!) to help control its spread. Some even hire professionals to remove the plant. Princeton Hydro has treated it on various project sites along with other invasive plants.

With high levels of vitamins A and C, zinc, carotenoids, and fiber, it’s a shame to let this invasive take up space in our trash. While invasive to landscapes, this wild plant is safe to eat, so long as it hasn’t been sprayed with any chemical treatments. Garlic mustard leaves can easily be added to sauces, salads, sautées, and more!

How to Harvest and Prepare Garlic Mustard for Cooking:
  1. Correctly identify the garlic mustard plant in your landscape — the rough-toothed leaves and garlic odor when crushed are giveaways.
  2. Assure that it has not been amended/treated by local landscapers or public works.
  3. Make sure there’s no poison ivy growing with it.
  4. Pull up the plant by the roots, making sure not to scatter the seeds as you pull.
  5. Bag the plant to avoid spreading the seeds in transport.
  6. When you’re ready to cook, cut off the leaves.
  7. Discard the stalk and roots in a sealed bag for disposal.
  8. Wash or soak the leaves in water and pat dry.
  9. Start cooking!
Recipe FOR GARLIC MUSTARD PESTO:

1 cup of garlic mustard leaves

2 cloves of garlic

1 cup of basil leaves

¼ cup of walnuts or pine nuts

1 cup of olive oil

½ cup of shredded Parmesan cheese

1 tablespoon of apple cider vinegar

1 tablespoon of maple syrup

1 lemon (squeeze in fresh juice to taste)

Before you start, make sure to thoroughly rinse the garlic mustard and pat dry.

Combine garlic mustard, basil, garlic, and pine nuts in a food processor or blender. Pulse until the ingredients are loosely chopped. Next, add the vinegar, maple syrup, and olive oil and blend until it is smooth. Finally, add the Parmesan cheese and lemon juice to taste. Blend again until smooth. Finally, add salt and pepper to taste.

Pour pesto over pasta, spread on toast, use as a marinade, or do whatever else you’d do with a delicious sauce!

For more information on other edible invasive species, visit Eat the Invaders‘ website.

Kelsey Mattison is Princeton Hydro’s Marketing Coordinator and a recent graduate of St. Lawrence University with a degree in English and environmental studies and a passion for environmental communication. Through her extracurricular work with various nonprofit organizations, she has developed expertise in social media management, content writing, storytelling, and interdisciplinary thinking. In her free time, Kelsey enjoys dancing of all sorts, going on long walks with her camera, and spending time with friends and family in nature.

Capture the Change at Roebling Park

By Kelsey Mattison, Marketing Coordinator

Our wetland restoration project at Roebling Park just got even cooler! The Mercer County Park Commission (MCPC) is launching a citizen science/outreach campaign to help them document the visual changes seen in the park as the restoration progresses.

MCPC invites visitors to the park to help capture the change from various vantage points within the park. There are seven photo stations spread throughout the park’s trail. All are clearly marked with signage and directions on how to participate in the Capture the Change initiative.

Because the restoration heavily involves the removal of invasive Phragmites australis, most of the vantage points currently overlook dense swaths of “phrag” overgrowth in the marsh. Once the restoration is complete, that overgrowth will give way to native flora, increased biodiversity, enhanced tidal function, more incredible viewscapes, and so much more.

Here are some photos we captured at MCPC’s guided hike through the marshland, introducing the Capture the Change initiative. These photos were taken at each Capture the Change vantage point along the trail.

First Capture the Change vantage point

Second Capture the Change vantage point

Third Capture the Change vantage point

Fourth Capture the Change vantage point

Fifth Capture the Change vantage point

Sixth Capture the Change vantage point

Seventh Capture the Change vantage point

You can join the Capture the Change initiative too by posting a photo from one of these vantage points and adding the hashtag #BagthePhrag. We can’t wait to watch this marshland transform!

For more details on this restoration project, check out this blog:

Restoring the Northernmost Freshwater Tidal Marsh on the Delaware River

Kelsey Mattison is Princeton Hydro’s Marketing Coordinator and a recent graduate of St. Lawrence University with a degree in English and environmental studies and a passion for environmental communication. Through her extracurricular work with various nonprofit organizations, she has developed expertise in social media management, content writing, storytelling, and interdisciplinary thinking. In her free time, Kelsey enjoys dancing of all sorts, going on long walks with her camera, and spending time with friends and family in nature.

Arbor Day Bird Walk & Planting at Exton Park

On Thursday, April 25th, 2019, we teamed with the Friends of Exton Park and Homenet Automotive to host an early Arbor Day celebration at Exton Park in Exton, Pennsylvania. Paired with Bring Our Daughters and Sons to Work Day, the event drew over 35 volunteers (of all sizes) to help clean up Exton Park and plant 18 trees!

The day started with a leisurely bird walk throughout the park lead by Friends of Exton Park birders. Participants spotted Red-winged Blackbirds, a Solitary Sandpiper, a Wilson’s Snipe, a Downy Woodpecker and even a Green Heron.

After the bird walk, planting and clearing began. Together, volunteers cleared a hefty amount of multiflora rose and garlic mustard, two invasive species prevalent in the park. With the help of our Landscape Designer, Cory Speroff, MLA, ASLA, CBLP, and Senior Limnologist, Mike Hartshorne, volunteers also planted eight river birch, five red osier dogwood, and five swamp white oak trees throughout the park.

At Princeton Hydro, we value working with our clients and partners to create sustainable landscapes that include native plants that will thrive in our local ecosystems. At all our project sites, we aim to restore and maintain our natural habitats and landscapes. And, we love using teamwork to do it!

We were proud contribute the trees for this event and thank our volunteers for all their hard work. This is the second year we have participated in this Arbor Day volunteer event. We are looking forward to making it an annual tradition!

Friends of Exton Park offers weekly bird walks and volunteer opportunities throughout the year. Go here to learn more and get involved.

6 Tips To Prepare Your Pond For Spring

It’s officially time to say goodbye to winter and “spring” your pond out of hibernation mode. We’ve put together six tips for getting your pond ready for Spring and ensuring it remains healthy all year long.

1. SPRING CLEANING 

The first step in preparing your pond for Spring is to give it a thorough cleaning. Remove leaves, debris, and any surface algae that may have accumulated over the winter. For shallow ponds, you may be able to use a net or pond rake to remove debris and sediment from the bottom and along the perimeter of the pond.

2. INSPECT YOUR POND FOR DAMAGE

Inspect your pond, including berms, outlet structures, and trash racks for any damage that may have occurred over winter due to ice. If you observe any damage, we recommend contacting a professional right away. One of our engineers or certified pond managers can determine if the damage is superficial or requires more significant repairs. Also, if your pond is equipped with an aeration system, before starting it up, be sure to schedule a system inspection. A thorough inspection and proper start-up procedure will ensure the system remains fully and effectively operational for the entire summer.

3. PUT YOUR POND TO THE TEST

The routine testing of your pond’s water quality is an important part of preventing harmful algae growth, fish kills, and other problems. We recommend conducting a “Spring start up” water quality analysis of your pond. The resulting data will inform the management process and allow for the development of a pro-active, eco-friendly management plan. Maintaining your pond’s water quality helps to control nuisance aquatic species and promote environmental conditions supportive of a healthy and productive fishery.

4. AQUASCAPE YOUR SHORELINE

It’s important to check the pond’s shoreline for any signs of erosion. Mowing to the water line, especially in ponds that have fluctuating water levels, can lead to severe shoreline erosion. Eroding shorelines can be easily stabilized by planting native, riparian plants.

Deep-rooted, native emergent aquatic vegetation is able to tolerate alternating periods of exposure and dry inundation. The correct combination of native aquatic plants, emergent wetland plants, and transitional upland plants can correct or prevent chronic shoreline erosion problems. A properly planted (aquascaped) edge beautifies the shoreline, stabilizes erosion problems, creates fish and amphibian habitat, attracts pollinating species and a variety of birds, and decreases mosquito breeding.

5. CONSIDER INSTALLING AN AERATION SYSTEM

Sub-surface aeration systems eliminate stagnant water and keep your pond thoroughly mixed and properly circulated. These systems are the most cost-effective and energy-efficient way to maintain proper pond circulation. Proper aeration enhances fish habitat, minimizes the occurrence of algae blooms, and prevents mosquito breeding. It’s best to contact a certified lake/pond manager to first determine if aeration is the right solution for you. If it is, an aeration system tailored to your pond’s needs can be designed and installed.

6. HAVE AN ECOLOGICALLY BALANCED POND MANAGEMENT PLAN

There is more to pond management than weed and algae treatments alone. There is also a big difference between simple pond maintenance and ecologically-based pond management. A customized pond management plan acts as a “blueprint” that guides  proactive, long-term care for your pond.

Our certified lake and pond managers can assess the status of your pond and provide you with an environmentally holistic management plan that is based on the unique physical, hydrologic, chemical, and biological attributes of your pond. A management plan identifies the causes of your pond’s problems and provides you with the guidance needed to correct these problems. The results are far more environmentally sustainable than simple (and often unnecessary) reactive weed and algae treatments.

 

To learn more about our lake and pond management services or schedule a consultation, visit: http://bit.ly/pondlake.

Wetland Restoration Project Wins “Land Ethics” Award of Merit

The Pin Oak Forest Conservation Area, located in a heavily developed area of northern Middlesex County, New Jersey, once suffered from wetland and stream channel degradation, habitat fragmentation, decreased biodiversity due to invasive species, and ecological impairment. The site was viewed as one of only a few large-scale freshwater wetland restoration opportunities remaining in this region of New Jersey. Thus, a dynamic partnership between government agencies, NGOs, and private industry, was formed to steward the property back to life and restore its natural function. Today, at Bowman’s Hill Wildflower Preserve’s 19th Annual Land Ethics Symposium, Middlesex County and the project team were presented with the “Land Ethics Award of Merit” for its remarkable restoration achievements.

“In just a few years, the landscape at Pin Oak has transformed from a degraded, disconnected wetland to a healthy, high-functioning landscape,” said Mark Gallagher, Vice President of Princeton Hydro. “This restoration project exemplifies how a diverse group of public and private entities can work together to identify opportunities, overcome challenges and achieve tremendous success.”

The Pin Oak restoration team includes Middlesex County Office of Parks and Recreation, Woodbridge Township, Woodbridge River Watch, New Jersey Freshwater Wetlands Mitigation Council, GreenTrust Alliance, GreenVest, and Princeton Hydro.

The Pin Oak Forest Conservation Area is a 97-acre tract of open space that contains a large wetland complex at the headwaters of Woodbridge Creek. In 2017, the award-winning restoration project converted over 30 acres of degraded freshwater wetlands, streams and disturbed uplands dominated by invasive species into a species-rich and highly functional headwater wetland complex. The resulting ecosystem provides valuable habitat for wildlife and a nurturing environment for native plants such as pin oak, swamp white oak, marsh hibiscus, and swamp rose. The restored headwater wetland system provides stormwater management, floodplain storage, enhanced groundwater recharge onsite, and surface water flows to Woodbridge Creek, as well as public hiking trails, all benefiting the town of Woodbridge.

The Land Ethics Award recognizes the creative use of native plants in the landscape, sustainable and regenerative design, and ethical land management and construction practices. The recipient is selected by a jury of professionals in the field of design, preservation and conservation, and the award is presented at the Annual Symposium.

Photo courtesy of Barbara Storms, Bowman’s Hill Wildflower Preserve.

In addition to the Award of Merit, Bowman’s Hill Wildflower Preserve’s honored Dr. Marion Kyde with the 2019 Land Ethics Director’s Award and Doylestown Township Environmental Advisory Council with the 2019 Land Ethics Award. Congratulations to all of the winners!

Established in 1934, Bowman’s Hill Wildflower Preserve is a 134-acre nature preserve, botanical garden, and accredited museum working to inspire the appreciation and use of native plants by serving as a sanctuary and educational resource for conservation and stewardship. For more information, visit www.bhwp.org.

Read more about the Pin Oak Forest Restoration project:

Innovative and Effective Approach to Wetland Restoration

To learn more about Princeton Hydro’s wetland restoration services and recent projects, visit us here: http://bit.ly/PHwetland

 

Restoring the Northernmost Freshwater Tidal Marsh on the Delaware River

By Kelsey Mattison, Marketing Coordinator

Located in Hamilton Township, New Jersey, Mercer County’s John A. Roebling Memorial Park offers residents in the surrounding area a freshwater marsh with river fishing, kayaking, hiking, and wildlife-watching. The park contains the northernmost freshwater tidal marsh on the Delaware River, Abbott Marshland. Since the mid-1990s, many public and private partnerships have developed to help support the preservation of this important and significant marsh.

Tidal marshes, like the 3,000-acre Abbott Marshlands, contain valuable habitat for many rare species like River Otter, American eel, Bald Eagle, and many species of wading birds. Unfortunately, the Abbott Marshland has experienced a significant amount of loss and degradation, partially due to the introduction of the invasive Phragmites australis, or, Common Reed.

Phragmites australis

Phragmites australis is a species of grass that has a non-native invasive form that creates extensive strands in shallow water or on damp ground. The reed tends to colonize disturbed wetlands and then spreads very rapidly, outcompeting desirable native plant species. Once it is established, it forms a monoculture with a dense mat and does not allow any opportunity for native plants to compete. This impairs the natural functioning of the marsh ecosystem by altering its elevations and tidal reach which impacts plant and animal communities. Over the last century, there has been a dramatic increase in the spread of Phragmites australis, partly due to development impacts that resulted in disturbances to wetlands.

For the Mercer County, Princeton Hydro put together a plan to reduce and control the Phragmites australis, in order to increase biodiversity, to improve recreational opportunities, and to improve visitor experience at the park. This stewardship project will replace the Phragmites australis with native species with a goal to reduce its ability to recolonize the marsh. In September, our Vice President Mark Gallagher and Senior Project Manager Kelly Klein presented our plan to the public at the Tulpehaking Nature Center.

Vice President Mark Gallagher presenting on the project at the Tulpehaking Nature Center.

Princeton Hydro conducted a Floristic Quality Assessment to identify invasive areas and performed hydrologic monitoring to understand tidal stage elevations. Phase 1 of the restoration process occurred this fall and included herbicide applications to eradicate the Phragmites australis. The herbicide used, Imazapyr, is USEPA and NJDEP approved and our field operation crew applied it using our amphibious vehicle called a Marsh Master. For harder to reach areas, we used our airboat.

According to a USDA report, Imazapyr has been extensively studied, and when properly applied, it has no impact to water quality, aquatic animal life, birds, or mammals, including humans. It works by preventing plants from producing a necessary enzyme called acetolactate synthase.

The goal of this wetland restoration project is to enhance plant diversity, wildlife habitat, and water quality in John A. Roebling Memorial Park. In late spring of 2019, we will revisit the site to continue spraying the Phragmites australis. By Spring of 2020, we expect to see native species dominating the landscape from the newly exposed native seed bank with minimal Phragmites australis. Stay tuned for more photos from the field when our Field Crew returns to the site for Phase II in early Spring!   

View of John A. Roebling Memorial Park from the access road.

For more information about Princeton Hydro’s invasive species removal and wetland restoration services, visit: bit.ly/InvasivesRemoval 

Kelsey Mattison is a recent graduate of St. Lawrence University with a degree in English and environmental studies and a passion for environmental communication. Through her extracurricular work with various nonprofit organizations, Kelsey has developed expertise in content writing, storytelling, verbal communication, social media management, and interdisciplinary thinking. Her responsibilities at Princeton Hydro include social media management, proposal coordination, editorial overview, and other marketing tasks. As a member of the Princeton Hydro team, she aims to further its mission by taking creative approaches to communicating about our shared home: Planet Earth.

Efforts to Manage Hydrilla in Harveys Lake Prove Difficult but Effective

Collaboration between state agencies and local organizations in Luzerne County bring in grant money to determine Hydrilla infestation levels in Harveys Lake. Treatment efforts are scheduled for 2019.

Story provided by Princeton Hydro Senior Limnologist Michael Hartshorne, and originally published in the Pennsylvania iMapInvasives Fall 2018 Newsletter

Hydrilla (Hydrilla verticillata)

Hydrilla (Hydrilla verticillata) is a relatively new invasive plant in Pennsylvania with the first documented occurrence in 1989 in Adams County. Still, it was not until recently that lake managers, park rangers, and others in the natural resource field have turned their attention to this aggressive invader. Looking incredibly similar to our native waterweed (Elodea canadensis), hydrilla differs in that it is comprised of 4-8 whorled, toothed leaves in contrast to the smooth edged, 3-leaved whorl of E. canadensis.

 

Harveys Lake, located in the Borough of Harveys Lake (Luzerne County) is a large, deep glacial lake with limited littoral (i.e., shoreline) habitat. A significant body of work has been conducted at the lake with the original Phase I: Diagnostic-Feasibility Lake study conducted in 1992 and a Total Maximum Daily Load (TMDL) issued for phosphorus in 2002.

From 2002 to present, Princeton Hydro has assisted the Borough in the restoration of the lake with a heavy focus on stormwater best management practices (BMPs) supplemented by routine, in-lake water quality monitoring. The goal of the storm water/watershed-based efforts was to reduce the lake’s existing, annual total Hydrilla (Hydrilla verticillata) phosphorus load so it’s in full compliance with the established TMDL.

Mapped locations noted in 2014 and 2015 of hydrilla in Harveys Lake as documented in the Pennsylvania iMapInvasives database.

Over the last 15 years, the installation of these watershed-based projects has led to improved water quality conditions; specifically, phosphorus and algae concentrations have been reduced. While water quality conditions improved Harveys Lake, it was during one of the routine, summer water quality monitoring events conducted in July 2014 that a dense stand of hydrilla was noted at the Pennsylvania Fish and Boat Commission’s public boat launch. More than likely, the plant entered the lake as a “hitchhiker” on the boat or trailer being launched from this public boat launch by someone visiting the lake.

Hydrilla (Hydrilla verticillata) Credit: Nick Decker, DCNR Bureau of State Parks

Since the initial identification and confirmation of the hydrilla, the Borough of Harveys Lake has worked in conjunction with the Harveys Lake Environmental Advisory Council, the Luzerne County Conservation District, the Pennsylvania Department of Environmental Protection, and Princeton Hydro to secure funding for additional surveys to determine the spatial extent and density of growth followed by an aggressive eradication plan.

Grant funds already allocated to Harveys Lake under the state’s Non-Point Source Pollution Program were used to conduct a detailed boat-based and diving aquatic plant survey of Harveys Lake to delineate the distribution and relative abundance of the hydrilla in 2014. During these surveys, the distribution of the hydrilla was found to be limited to the northern portion of the lake with the heaviest densities just off the boat launch with plants observed growing in waters 20-25 feet deep.

A follow-up survey had shown hydrilla coverage to increase from 38% of surveyed sites to 58% of sites in 2016 with hydrilla now present at the lake’s outlet area. Spatial coverage of hydrilla increased from approximately 50 acres in 2014 to 210 acres in 2016, an increase of 160 acres.

This map shows the 2018 proposed treatment area of Harvey’s Lake. Due to funding issues, treatment is now scheduled for 2019. The current hydrilla distribution encompasses the entire littoral zone of Harvey’s Lake.

In hopes of preventing hydrilla escaping into the lake’s outlet stream, the Borough of Harveys Lake funded an emergency treatment of the two-acre outlet area in 2016 utilizing the systemic herbicide Sonar® (Fluridone). A follow-up treatment of 159 acres was conducted in 2017, again utilizing the Fluridone-based systemic herbicide.

The next treatment, which will attempt to cover the majority of the littoral habitat covered by hydrilla, is scheduled for late spring/early summer of 2019. It should be noted that Sonar® is being applied at a low concentration that is effective at eradicating the hydrilla, but will not negatively impact desirable native plant species.

The treatments conducted to date have documented some reductions in the vegetative coverage of hydrilla as well as tuber production relative to the original plant surveys conducted in 2016. However, it is recognized that it will take multiple years of treatment to eradicate this nuisance plant from the lake, as well as a highly proactive, interactive program to educate residents as well as visitors to the lake in preventing the re-introduction of this or other invasive species to Harveys Lake.

 

The successful, long-term improvement of a lake or pond requires a proactive management approach that addresses the beyond simply reacting to weed and algae growth and other symptoms of eutrophication. Our staff can design and implement holistic, ecologically-sound solutions for the most difficult weed and algae challenges. Visit our website to learn more about Princeton Hydro’s lake management services: http://bit.ly/pondlake

Michael Hartshorne‘s  primary areas of expertise include lake and stream diagnostic studies, TMDL development, watershed management, and small pond management and lake restoration. He is particularly skilled in all facets of water quality characterization, from field data collection to subsequent statistical analysis, modeling, technical reporting, and the selection and implementation of best management practices. He has extensive experience in utilizing water quality data in concert with statistical and modeling packages to support load reduction allocations for the achievement of water quality standards or tailored thresholds set forth to reduce the rate of cultural eutrophication. He also has significant experience in conducting detailed macrophyte, fishery, and benthic surveys.

Innovative and Effective Approach to Wetland Restoration

The Pin Oak Forest Conservation Area is a 97-acre tract of open space that contains an extremely valuable wetland complex at the headwaters of Woodbridge Creek. The site is located in a heavily developed landscape of northern Middlesex County and is surrounded by industrial, commercial, and residential development. As such, the area suffered from wetland and stream channel degradation, habitat fragmentation, decreased biodiversity due to invasive species, and ecological impairment. The site was viewed as one of only a few large-scale freshwater wetland restoration opportunities remaining in this highly developed region of New Jersey.

Recognizing the unique qualities and great potential for rehabilitating and enhancing ecological function on this county-owned parkland, a dynamic partnership between government agencies, NGOs, and private industry, was formed to restore the natural function of the wetlands complex, transform the Pin Oak Forest site into thriving habitat teeming with wildlife, and steward this property back to life. The team designed a restoration plan that converted 28.94 acres of degraded freshwater wetlands, 0.33 acres of disturbed uplands dominated by invasive species, and 1,018 linear feet of degraded or channelized streams into a species-rich and highly functional headwater wetland complex.

BEFORE
View of stream restoration area upon commencement of excavation activities. View of containerized plant material staged prior to installation.

 

We used an innovative approach to restore the hydraulic connection of the stream channel with its floodplain in order to support wetland enhancement. Additionally, to further enhance wetlands with hydrologic uplift, the team incorporated microtopography techniques, which creates a variable surface that increases groundwater infiltration and niches that support multiple habitat communities. This resulted in a spectrum of wetland and stream habitats, including the establishment of a functional system of floodplain forest, scrub shrub, emergent wetlands and open water. Biodiversity was also increased through invasive species management, which opened the door for establishing key native flora such as red maple, pin oak, swamp white oak, and swamp rose. The restored headwater wetland system also provides stormwater quality management, floodplain storage, enhanced groundwater recharge onsite, and surface water flows to Woodbridge Creek.

Completed in 2017, the integrated complex of various wetland and upland communities continues to provide high quality habitat for a wide variety of wildlife species including the state-threatened Black-crowned Night heron and Red-headed Woodpecker. The work done at the site significantly enhanced ecological function, providing high-quality habitat on indefinitely-preserved public lands that offer countless benefits to both wildlife and the community.

AFTER
Post-restoration in 2018, looking Northeast. View of wetland enhancement approximately 2 months after completion of seeding and planting activities.

 

Public and private partnerships were and continue to be critical to the success of this project. The diverse partnership includes Middlesex County Office of Parks and Recreation, Woodbridge Township, Woodbridge River Watch, New Jersey Freshwater Wetlands Mitigation Council, GreenTrust Alliance, GreenVest, and Princeton Hydro. The partners joined together as stakeholders to identify long term restoration and stewardship goals for Pin Oak Forest Preserve, and nearly four years later, the partners all remain involved in various aspects of managing the property and this project itself, ranging from fiscal oversight by New Jersey Freshwater Wetland Mitigation Council and GreenTrust Alliance, to permit and landowner access coordination performed by Woodbridge Township and Middlesex County, or the ongoing stewardship, maintenance, and monitoring of the project and the larger park, being conducted by being conducted by GreenTrust Alliance, GreenVest, and NJ Department of Environmental Protection.

This project was funded through the New Jersey Freshwater Wetland In-Lieu Fee program. In 2014, GreenTrust Alliance, GreenVest, and Princeton Hydro secured $3.8 million dollars of funding on behalf of the Middlesex County Parks Department to restore three wetland sites, which included Pin Oak Forest.

The Pin Oak Forest project is a great model for showcasing a successful approach to the enhancement of public lands through a dynamic multidisciplinary, multi-stakeholder partnership. And, because of proper planning and design, it has become a thriving wildlife oasis tucked in the middle of a densely-populated suburban landscape.

Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of wetland rehabilitation projects. To learn more about our wetland restoration, creation, and enhancement services, visit: bit.ly/PHwetland

Restoring and Revitalizing Freshwater Mussels

Freshwater mussels are among the oldest living and second most diverse organisms on Earth with over 1,000 recognized species. Here in the eastern part of the U.S., we have more species of freshwater mussels than anywhere in the world. Unfortunately, freshwater mussels are one of the most rapidly declining animal groups in North America. Out of the 300 species and subspecies found on the continent, 70 (23%) have been federally listed as “Threatened” or “Endangered” under the Endangered Species Act. And, in the last century, over 30 species have become permanently extinct. So, why are populations declining so fast?

Freshwater mussels are filter feeders and process large volumes of the water they live in to obtain food. This means of survival also makes them highly susceptible to industrial and agricultural water pollution.  Because they are constantly filtering water, the contaminants and pathogens that are present are absorbed into the mussel’s tissues. As such, mussels are good indicators of water quality and can greatly contribute to improving water quality by filtering algae, bacteria and organic matter from the water column.

Not only do freshwater mussels rely on water quality, they are dependent on fish and other aquatic organisms for reproductive success. In order for a freshwater mussel to complete the reproduction process, it must “infect” a host fish with its larvae. The method depends on the specie of mussel. Some species lure fish using highly modified and evolved appendages that mimic prey. When a fish goes into investigate the lures, the female mussel releases fertilized eggs that attach to the fish, becoming temporarily parasitic. Once the host fish is infected, it can transfer the mussel larvae upstream and into new areas of the river.

Both habitat loss from dam construction and the introduction of pesticides into the water supply has contributed to the decline of freshwater mussels. With approximately 300 mussel species in the U.S. alone, a critical component of restoring and revitalizing mussel populations is truly understanding their biology, which begins with the ability to properly differentiate each species and properly identify and catalog them. Princeton Hydro’s Senior Scientist Evan Kwityn, CLP and Aquatic Ecologist Jesse Smith recently completed the U.S. Fish and Wildlife Service‘s Fresh Water Mussel Identification Training at the National Conservation Training Center in West Virginia.

Through hands-on laboratory training, Evan and Jesse developed their freshwater mussel identification skills and their knowledge of freshwater mussel species biology. Course participants were tasked with mastering approximately 100 of the most common freshwater mussel species in the United States. They also learned about proper freshwater mussel collection labeling, the internal and external anatomy and meristics of a freshwater mussel, and distributional maps as an aid to freshwater mussel identification.

In a recently published press release, Tierra Curry, a senior scientist with the Center for Biological Diversity was quoted as saying, “The health of freshwater mussels directly reflects river health, so protecting the places where these mussels live will help all of us who rely on clean water. This is especially important now, when we see growing threats to clean water from climate change, agriculture and other sources.”

Princeton Hydro is committed to protecting water quality, restoring habitats, and managing natural resources. Read about some of our recent projects and contact us to discuss how we can help you.

To learn more about freshwater mussels, check out this video from U.S. Fish and Wildlife Service:

EMPLOYEE SPOTLIGHT: Meet the Interns

This summer, Princeton Hydro is hosting five interns, each of whom are passionate about protecting water quality and preserving our natural resources. From June to August, our interns will gain professional work experience in a variety of subject areas, ranging from stormwater management to dam restoration to ecological design to lake management and much more. They are assisting on a variety of projects, getting real-world practice in their areas of study, and working with a Princeton Hydro mentor who is helping them gain a deeper understanding of the business of environmental and engineering consulting and setting them up for career success.

 

Meet Our Interns:

 

Ivy Babson, Environmental Science Intern

Ivy is a rising senior from University of Vermont, majoring in Environmental Science with a concentration in Ecological Design, and minor in Geospatial Technologies. In the future, she hopes to implement ecological design in urban areas and create a sustainable environment that would allow future generations to care for and interact with a healthy earth.

Ivy will work alongside Senior Aquatics Scientist Dr. Jack Szczepanski and the Princeton Hydro Aquatics team on projects related to lake and pond management, including fisheries management, data collection and analysis, and water quality monitoring. Recently, Ivy assisted Aquatic Ecologist Jesse Smith in completing an electrofishing survey in a Northern New Jersey river.

Learn more about Ivy.

 

Marissa Ciocco, Geotechnical Intern

Marissa is entering her fourth year at Rowan University where she is a Civil and Environmental Engineering major with a Bantivoglio Honors Concentration. In the future, Marissa hopes to work towards creating a greener and safer environment.

During her internship, Marissa will be mentored by Jim Hunt P.E., Geotechnical Engineer, who has already engaged Marissa in a few construction oversight projects, including a culvert restoration effort in Medford Lakes, NJ and observing geotechnical borings in Evesham, NJ.

Learn more about Marissa.

 

Will Kelleher, Environmental Science Intern

Will is a rising junior at the University of Vermont, studying Environmental Science with a concentration in Water Resources. His current career interests are focused around wetlands restoration and water chemistry. He recently spent two weeks studying water management and sustainable technology in the Netherlands and in the past has helped with biological and chemical stream monitoring with Raritan Headwaters Association.

Mentored by Senior Aquatics Scientist Dr. Jack Szczepanski, Will’s area of focus will be lake and pond management. He’ll spend most of his time in the field alongside members of the Aquatics Team collecting water quality data and mapping aquatic plants, learning about aquatic habitat creation, and implementing various invasive aquatic weed control efforts.

Learn more about Will.

 

Veronica Moditz, Water Resources Intern

We are thrilled to welcome back Veronica, who interned with us last year, and is in her final year at Stevens Institute of Technology, pursuing a Bachelor Degree in Environmental Engineering and a Master Degree in Sustainability Management. She is currently the secretary for Steven’s Environmental Engineering Professional Society chapter. In the future, she hopes to work on more sustainable approach to engineering problems.

Veronica will work alongside Project Engineer and Construction Specialist Amy McNamara, EIT, and Mary L. Paist-Goldman, P.E., Director of Engineering Services, on a variety of environmental engineering projects. Most recently, she assisted with a construction oversight and stormwater management project in Morris County, NJ.

Learn more about Veronica.

 

Tucker Simmons, Water Resources Engineer

Tucker is a Civil and Environmental Engineering major at Rowan University focusing on Water Resources Engineering. His Junior Clinic experience includes the study of Bio-Cemented sand and the Remote Sensing of Landfill Fires. In the future, Tucker hopes to work on creating a more sustainable environment.

Throughout his internship, Tucker will be mentored by Dr. Clay Emerson, P.E. CFM, Senior Water Resources Engineer, and will work on projects related to stormwater management, hydrologic and hydraulic analysis, and various aspects of environmental restoration. He recently assisted with a sink hole inspection in Tredyffrin Township, PA and mapped the water depths of a lake in Bucks County, PA.

Learn more about Tucker.

 

Stay tuned for updates on what our interns are working on!