Year in Review: Top 10 Successes of 2020

Princeton Hydro has grown from a small, four-person firm operating out of a living room to a 60+ person business with six office locations in the Northeast and a satellite office in Colorado. Over the last two decades, we’ve restored many miles of rivers, improved water quality in hundreds of ponds and lakes, and enhanced thousands of acres of ecosystems in the Northeast.

This year, we are feeling extra grateful for those who have supported our business and helped us further our mission during these difficult times. As we reflect on 2020 and set our sights on 2021, we have many successes to celebrate.  Here’s a look at our top 10 successes of the year:

 

1. RESTORED FISH PASSAGE ON SIX WATERWAYS

Our team installed one fish ladder and oversaw the removal of five dams in four states. In New York, in partnership with Riverkeeper, Princeton Hydro oversaw the removal of two dams on tributaries to the Hudson River: Strooks Felt Dam on the Quassaick Creek in Newburgh and Barrier #1 on Furnace Brook in Cortlandt. The dams were the first barriers for fish movement upstream from the Hudson River. In Connecticut, the Slocomb Dam along Roaring Brook in South Glastonbury was removed, restoring American eel and trout passage. In Massachusetts, the Horseshoe Mill Pond Dam in Wareham was removed, opening over 3 miles of fish habitat on the Weweantic River, Buzzards Bay’s largest freshwater river. Here, migratory fish can now swim unimpeded from Buzzards Bay to lay their eggs in fresh water upstream for the first time in 200 years. In New Jersey, we led the removal of Warren Hills Dam in Washington, NJ and partnered with the American Littoral Society to install a fish ladder at the Old Mill Pond Dam in Spring Lake Heights, NJ, which allows migratory fish to scale the dam and access spawning grounds that had been blocked-off for over 100 years.

 


 2. LED THE LARGEST APPLICATION OF PHOSLOCK IN THE NORTHEAST ON NEW JERSEY’S LARGEST LAKE

We implemented a variety of measures that helped Lake Hopatcong, New Jersey’s largest lake, mitigate harmful algal blooms (HABs). We applied a clay-based nutrient inactivating technology called Phoslock, which was the largest Phoslock treatment to occur in the Northeastern US. This treatment along with HAB prevention measures like the installation of biochar bags, nanobubble aeration systems, and floating wetland islands proved successful in mitigating HABs and improving overall water quality in 2020. And to top it all off, The Washington Post was awarded a Pulitzer Prize for its explanatory reporting on a novel climate change story featuring Lake Hopatcong and our lake management work.

 


3.  DESIGNED AND CONSTRUCTED WETLAND AND SHORELINE RESTORATION PROJECTS

We completed a shoreline restoration project at The Dunes at Shoal Harbor, a coastal residential community along the Jersey Shore that was severely impacted by Hurricane Sandy. In Linden’s Tremley Point neighborhood – another New Jersey community ravaged by Hurricane Sandy – we completed a green infrastructure and floodplain restoration project, the first restoration project to ever be implemented on NJDEP Blue Acres-acquired property. We transformed a densely developed, flood-prone, former industrial site in Bloomfield into a thriving public park with 4.2 acres of wetlands. Each of these three projects helped to restore valuable ecological functions and increase storm resiliency.

 


4. LAUNCHED A COMMUNITY SCIENCE MONITORING PROJECT FOR THE SCHUYLKILL RIVER

On World Habitat Day, the nonprofit, Schuylkill River Greenways, in partnership with Berks Nature, Bartram’s Garden, The Schuylkill Center for Environmental Education, Stroud Water Research Center, and Princeton Hydro, kicked-off a Water Quality Monitoring Project for the Schuylkill River. This project aims to document the current ecological health of the river and engage a diverse set of river users and residents. As part of the campaign, the team is recruiting “Community Scientists” to conduct Visual Monitoring Assessments. Additionally, the stakeholder team is implementing water quality sampling and monitoring throughout 2021 at locations along the main stem of the Schuylkill River.

 


5. WELCOMED EIGHT NEW FULL-TIME TEAM MEMBERS

This year, we added eight new full-time staff members and one intern with expertise and qualifications in a variety of fields, all of whom have a passion for water resource management and environmental stewardship. In March, we were thrilled to welcome Dr. Laura Craig to our team as the new Director of Natural Resources. She is an Aquatic Ecologist who has overseen 25 dam removals, co-founded the NJ Dam Removal Partnership, and has 10+ years of experience in river conservation and climate adaptation. Go here to learn about the career opportunities currently available with us.

 


6. COMPLETED A MAJOR ECOLOGICAL STUDY OF THE HUDSON RIVER

Photo from USACE

The USACE Commanding General and 55th U.S. Army Chief of Engineers signed the Hudson River Habitat Restoration Ecosystem Restoration study, designating it as complete and making it eligible for congressional authorization. Princeton Hydro led the Integrated Feasibility Study and Environmental Assessment, which recommends three ecosystem restoration projects at sites along the river including Henry Hudson Park, Schodack Island Park, and Moodna Creek. The Hudson River Estuary is a significant habitat for fish, plants, and other wildlife, and this milestone marks progress toward the river’s return to a dynamic and self-regulating ecosystem. If constructed, these projects would restore almost 24 football-sized fields of wetlands in total.

 


7. EARNED THREE PRESTIGIOUS AWARDS

The New Jersey Section of the American Water Resources Association honored Princeton Hydro with the “Excellence in Water Resources: Ecological Restoration Award” for the Linden Blue Acres Floodplain Restoration & Green Infrastructure project. This restored the ecological and floodplain function on former residential properties acquired by the NJDEP Blue Acres Program for the first time. The American Littoral Society and Princeton Hydro received the “Land Ethics Best Large-Scale Project Award” from Bowman’s Hill Wildflower Preserve for the work they did to restore the health and water quality of the Metedeconk River flowing through Ocean County Park in Lakewood, NJ. The Iowa Court and South Green Living Shoreline Project in Little Egg Harbor and Tuckerton, NJ, for which Princeton Hydro lead the sediment sampling/testing and hydrographic survey, received the “2020 Best Green Project Award” from Engineering News-Record.

 


8. GAVE OVER 20 PRESENTATIONS ON WATERSHED MANAGEMENT & RESILIENCY MEASURES

During the Hudson River Estuary Program’s conference, Christiana Pollack, GISP, CFM presented on managing invasive Phragmites and restoring wetland habitats. And, at the Consortium for Climate Risk in the Urban Northeast, Christiana presented on a flood mitigation analysis project in a flood-prone Philadelphia community. As part of The American Sustainable Business Council’s “Clean Water is Good for Business” campaign, Marketing & Communications Manager, Dana Patterson, led a webinar, titled “Making the Business Case on Clean Water Issues to the Media.” At the 2020 Delaware Wetlands Conference, Senior Project Manager, Michael Rehman, presented a wetland restoration project that illustrates how a degraded urban area can be successfully rehabilitated. And, for a New York State Federation of Lake Associations webinar series, Senior Aquatic Ecologist, Chris Mikolajczyk, CLM, presented on a unique lake management initiative. And, our Director of Aquatics, Dr. Fred Lubnow, joined Rep. Debbie Mucarsel-Powell & other experts to discuss Harmful Algal Blooms at a virtual #ProtectCleanWater Town Hall hosted by the National Wildlife Federation Action Fund.

 


9. CELEBRATED A VARIETY OF STAFF ACHIEVEMENTS

Our staff our repeatedly striving for personal growth and continue to amaze us. North American Lake Management Society chose Chris L. Mikolajczyk, CLM, Senior Aquatic Ecologist as the next President of the Board of Directors. Senior Ecologist, Michael Rehman, PWS, and Fluvial Geomorphologist, Paul Woodworth, became Certified Ecological Restoration Practitioners through the Society for Ecological Restoration. Emily Bjorhus and Robert George earned their Professional Wetland Scientist certification through the Society of Wetland Scientists program. In January, our Marketing & Communications Manager, Dana Patterson, received the Society of American Military Engineers New Jersey Post’s “Young Member Award” for her efforts in maintaining and advancing the objectives of the organization (pictured above). A national science journal published Environmental Scientist, Brittany Smith’s, graduate research study, which assessed “The Ecogeomorphic Evolution of Louisiana’s Wax Lake Delta.” Cory Speroff passed his Landscape Architecture exams and Andrew Simko earned his Professional Engineering license. And, Dr. Clay Emerson won our Earth Day Photo Contest with his incredible close-up of an Eastern Fence Lizard.

 


10. WE STAYED UNIFIED AND CONNECTED

2020 was a particularly challenging year, but the Princeton Hydro family stood together. With offices spread across the Northeast and collaboration between offices on a daily basis, we were unknowingly prepared for the shift to remote work during an unexpected global pandemic. But, it took more than just working laptops and VPN connections to keep us going. Because of our staff’s motivation and dedication to serving our clients, we were able to not only keep our firm open, but we continued to grow our geographic and service reach.

 


Thank you for supporting Princeton Hydro and sharing our stories. We truly appreciate each and every one of our clients, partners, and friends. Cheers to a fruitful 2021 and beyond!

After 100 Years, Fish Passage is Restored at Critical Migratory Fish Spawning Grounds in NJ

Photo by the American Littoral SocietyFor over 100 years, the Old Mill Pond Dam in Spring Lake Heights, New Jersey has blocked critical anadromous fish species from reaching optimal spawning habitat. Today, we are thrilled to announce that, thanks to a fish ladder installed by the American Littoral Society (ALS), migratory fish can now scale the dam and access upstream spawning grounds.

The 60-foot-long fish ladder is a device that allows a channel of water to flow through it and is engineered to create both the proper water depth and velocity for fish to navigate through. In this case, it will enable fish to scale the 10-foot-high dam and go deeper into Wreck Pond Brook.

This video from ALS provides an up-close look at the Alaska-Steeppass Fish Ladder and more details about the project:

Re-opening river passage for migratory species improves not only the health of Wreck Pond Brook and its watershed, but it also benefits the overall ecosystem of the Atlantic shoreline and its coastal rivers. It also supports important recreational and commercial species, such as cod, haddock, and striped bass, which leads to a healthier economy.

For over a century, the dam blocked anadromous fish like Alewife and Blueback river herring, from entering the Wreck Pond Brook Watershed. These fish spend most of their lives in the ocean but need freshwater in order to spawn. The Old Mill Pond Dam, an impassable obstruction for these migrating fish, was identified as a key contributor to the decline of Atlantic coast river herring populations. Subsequently, river herring were classified as National Oceanic and Atmospheric Administration (NOAA) Species of Special Concern and identified as requiring Concentrated Conservation Actions.

Design rendering provided by the American Littoral SocietyThe fish ladder, which was funded through the US Fish and Wildlife Service and implemented by ALS along with a variety of project partners, including Princeton Hydro, is one more major step in the ongoing effort to restore critical migratory fish spawning grounds, support a vibrant food web to the area, and rehabilitate Wreck Pond and its watershed.

According to the ALS, “Now, instead of Old Mill Dam acting as the furthest migration destination for Alewife and Blueback river herring, these fish have the ability to navigate up the dam through the fish ladder and utilize roughly an additional mile of optimal spawning habitat. The ALS will add the Old Mill Dam fish ladder and newly accessible spawning habitat into its ongoing river herring monitoring surveys.”

American Littoral Society promotes the study and conservation of marine life and habitat, protects the coast from harm, and empowers others to do the same. Learn more and get involved: littoralsociety.org.

Princeton Hydro has designed, permitted, and overseen solutions for fish passage including the installation of technical and nature-like fishways and the removal of dozens of small and large dams throughout the Northeast. To learn more about our fish passage and dam removal engineering services, visit: bit.ly/DamBarrier.

Images provided by the American Littoral Society. 

Photo by the American Littoral Society

UPDATE: NJ’s Dunes at Shoal Harbor Shoreline is Restored

The Dunes at Shoal Harbor, a coastal residential community in Monmouth County, New Jersey, is situated adjacent to both the Raritan Bay and the New York City Ferry channel.  In July 2018, Princeton Hydro was contracted to restore this coastal community that was severely impacted by Hurricane Sandy. Today, we are thrilled to report that the shoreline protection design plans have been fully constructed and the project is complete.

Rendering of the shoreline protection design
September 2020
A rendering of the shoreline protection design by Princeton Hydro. A snapshot of Princeton Hydro's completed work in September 2020.

In order to protect the coastal community from flooding, a revetment had been constructed on the property many years ago. The revetment, however, was significantly undersized and completely failed during Hurricane Sandy. The community was subjected to direct wave attack and flooding, homes were damaged, beach access was impaired, and the existing site-wide stormwater management basin and outfall was completely destroyed.

July 2018
September 2020

Princeton Hydro performed a wave attack analysis commensurate with a category three hurricane event and used that data to complete a site design for shoreline protection.

The site design and construction plans included:

  • The installation of a 15-foot rock revetment (one foot above the 100-year floodplain elevation) constructed with four-foot diameter boulders;

  • The replacement of a failed elevated timber walkway with a concrete slab-on-grade walkway, restoring portions of the existing bulkhead, clearing invasive plants, and the complete restoration of the failed stormwater basin and outlet; and

  • The development of natural barriers to reduce the impacts of storm surges and protect the coastal community, including planting stabilizing coastal vegetation to prevent erosion and installing fencing along the dune to facilitate natural dune growth.

These measures will prevent shoreline erosion, protect the community from wave attacks and flooding, and create a stable habitat for native and migratory species.

During the final walkthrough earlier this month, the Princeton Hydro team captured drone footage of the completed project site. Click below to watch the video:

For more images and background information on this project, check out the following photo gallery and read our original blog post from July 2018:

Conservation Spotlight: Dunes at Shoal Harbor Shoreline Protection

For more information about Princeton Hydro’s engineering services, go here.

Dredging Children’s Pond to Restore Water Quality in Strawbridge Lake

Sedimentation in Children’s Pond, which is located in Strawbridge Lake park, was negatively impacting the water quality Strawbridge Lake. In order to restore the pond and reduce impacts to Strawbridge Lake, the Moorestown Township Council awarded contracts to Princeton Hydro for the dredging and cleanup of the Children's Pond.

Strawbridge Lake is located in Moorestown Township in Burlington County, New Jersey with portions of the watershed also extending into Mount Laurel and Evesham Townships. This 33-acre, tri-basin lake is a result of the impoundment of the confluence of Hooten Creek and the North Branch of the Pennsauken Creek that dates back to the 1920s.

Image by NJ.govThe lake receives surface runoff through Hooten Creek to the Upper and Middle Basins and the Lower Basin receives runoff from the headwaters of the North Branch of Pennsauken Creek. The lake then discharges back into another section of the North Branch Pennsauken Creek, which then flows into the Delaware River.

The watershed area that drains into the Strawbridge Lake is made up of an intricate mix of land uses: agriculture, new and mature residential subdivisions, office parks, major highways, retail stores, and large industrial complexes. The lake and the park area that surrounds it are heavily used for a variety of recreational activities.

Children’s Pond, which is located in Strawbridge Lake Park, is a popular fishing spot in the community. The pond initially functions as a wetland and drains from the northern portion of the watershed. Sedimentation—the naturally occurring process of the deposition and accumulation of both organic and inorganic matter in the bottom and/or banks of waterbodies—had significantly reduced the mean pond depth, thereby reducing the pond’s aesthetic appeal, impairing the fishery, contributing to eutrophication, and impacting the water quality of Strawbridge Lake. Sedimentation can also lead to contamination that poses a threat to aquatic plant and wildlife.

The dredging of Children’s Pond was identified by Princeton Hydro’s Lake and Watershed Management Plan and presented to the Moorestown Township Council’s environmental committee as one of a number of immediate actions needed in order to restore the pond, preserve the health of the watershed, and reduce impacts to Strawbridge Lake. Dredging, often used as an efficient solution for sediment removal, can expeditiously restore the waterway to its original depth and condition while also removing dead vegetation, pollutants, excess nutrients, and trash that may have accumulated.

Moorestown Township Council awarded contracts to Princeton Hydro for the dredging and cleanup of the Children’s Pond, which was an important part of the previously mentioned Watershed Management Plan for Strawbridge Lake.

Before the dredging could begin, a variety of surveys, field investigations, and data collection activities took place at the project site. A bathymetric survey is a critical component of any dredging project because it measures the depth of a waterbody, as well as maps the underwater features of a waterbody.

Due to the small area and shallow depths of Children’s Pond, the survey was conducted using a calibrated sounding rod and a Trimble GPS unit. The calibrated sounding rod was lowered into the water until it reached the top of the accumulated sediment. The location of the sample point and the water depth was then recorded with the GPS unit. Next, the pole was pushed down into the sediment until the point of refusal, and the bottom of sediment elevation was also recorded with the GPS unit. Data was collected from shoreline to shoreline at 25-foot transect intervals.

The data collected via the bathymetric survey, as well as the site survey, field investigations, and soil analysis, was used to shape the project’s engineering design and construction plans.

Before the dredging commenced, Princeton Hydro conducted a bathymetric survey to understand the depth and underwater features of a water body.

With the data collection process complete, Princeton Hydro was able to finalize the engineering plans and obtain all necessary permits for the project. Once the project commenced, Princeton Hydro oversaw the construction process and documented the project’s progress through Daily Field Reports (DFRs).

DFRs act as a living record of the project and provide the project’s key stakeholders with full details of the team’s daily performance and productivity, including arrival and departure times, the weather and temperature, equipment utilized on-site that day, a description of the work completed, and photographs of the work in progress.

This photo from the DFR on March 2, 2020 documents the beginning of excavation work in Children’s Pond:

This photo from the DFR on April 16, 2020 shows grading being completed on the west side of Children’s Pond: 

This photo from the DFR on April 20, 2020 documents the continuation (and near completion) of the excavation and grading work:

Princeton Hydro provides construction oversight services to private, public, and nonprofit clients for a variety of ecosystem restoration, water resource, and geotechnical projects across the Northeast. For more information, go here. And, to get an inside look at all that construction oversight entails, check out our blog:

A Day in the Life of a Construction Oversight Engineer

Floating Wetland Islands: A Sustainable Solution for Lake Management

Nick Decker, PA State Parks Resource Manager, and Cory Speroff and Katie Walston of Princeton Hydro position a floating island of native plants in the lake at Frances Slocum State Park

Looking for a unique and creative way to manage nutrient runoff in freshwater lakes? Installing Floating Wetland Islands (FWI) is a low-cost, effective green infrastructure solution used to mitigate phosporus and nitrogen stormwater pollution often emanating from highly developed communities and/or argricultural lands.

FWIs are designed to mimic natural wetlands in a sustainable, efficient, and powerful way. They improve water quality by assimilating and removing excess nutrients that could fuel algae growth; provide valuable ecological habitat for a variety of beneficial species; help mitigate wave and wind erosion impacts; provide an aesthetic element; and add significant biodiversity enhancement within open freshwater environments.

“A pound of phosphorus can produce 1,100 lbs of algae each year. And, each 250-square foot island can remove 10 lbs of phosphorus annually.” explains Princeton Hydro Staff Scientist Katie Walston. “So, that’s 11,000 lbs of algae that is mitigated each year from each 250 square foot of FWI installed!”

This illustration, created by Staff Scientist Ivy Babson, conveys the functionality of a Floating Wetland Island

This illustration, created by Staff Scientist Ivy Babson, conveys the functionality of a Floating Wetland Island

Typically, FWIs consist of a constructed floating mat with vegetation planted directly into the material. Once the islands are anchored in the lake, the plants thrive and grow, extending their root systems through the mat and absorbing and removing excess nutrients from the water column such as phosphorus and nitrogen.

Native plants on the floating island designed by Princeton Hydro that will help reduce the phosphers and algae in the lake at Frances Slocum State ParkThe plants uptake a lot of nutrients, but the workhorse of the FWIs is the microbial community. The matrix used within the islands has a very high surface area and it promotes microbial growth, which performs the majority of the nutrient uptake. Additionally, the root growth from the plants continues to increase the surface area for the microbial biofilm to grow on. Both the plants and microbes acting together help optimize nutrient removal.

Princeton Hydro has designed and installed numerous FWIs in waterbodies large and small for the purpose of harmful algal bloom control, fisheries enhancement, stormwater management, shoreline preservation, wastewater treatment, and more. FWIs are also highly adaptable and can be sized, configured, and planted to fit the needs of nearly any lake, pond, or reservoir.

Greenwood Lake

Recently, the Princeton Hydro team completed a FWI installation in Belcher’s Creek, the main tributary of Greenwood Lake. The lake, a 1,920-acre waterbody located in  both Passaic County, New Jersey and Orange County, New York, is a highly valued ecological and recreational resource for both states and has a substantial impact on the local economies. In addition, the lake serves as a headwater supply of potable water that flows to the Monksville Reservoir and eventually into the Wanaque Reservoir, where it supplies over 3 million people and thousands of businesses with drinking water. 

Since the lake was negatively impacted by HABs during the 2019 summer season, Greenwood Lake Commission (GWLC) has made a stronger effort to eliminate HABs and any factors that contribute to cyanobacteria blooms for 2020 and into the future. Factors being addressed include pollutant loading in the watershed, especially that of Belcher’s Creek. The installation of FWIs in Belcher’s Creek will immediately address nutrients in the water before it enters Greenwood Lake and help decrease total phosphorus loading. In turn this will help reduce HABs, improve water quality throughout the Greenwood Lake watershed, and create important habitat for beneficial aquatic, insect, bird and wildlife species.

“In addition to the direct environmental benefits of FWIs, the planting events themselves, which involve individuals from the local lake communities, have long-lasting positive impacts,” said Dr. Jack Szczepanski, Princeton Hydro Senior Project Manager, Aquatics Resources. “When community members come together to help plant FWIs, it gives them a deepened sense of ownership and strengthens their connection to the lake. This, in turn, encourages continued stewardship of the watershed and creates a broader awareness of how human behaviors impact the lake and its water quality. And, real water quality improvements begin at the watershed level with how people treat their land.”

The project was partially funded by the New Jersey Department of Environmental Protection’s (NJDEP) Water Quality Restoration Grants for Nonpoint Source Pollution Program under Section 319(h) of the federal Clean Water Act. As part of the statewide HAB response strategy, the NJDEP made $13.5 million in funding available for local projects that improve water quality and help prevent, mitigate and manage HABs in the state’s lakes and ponds. The GWLC was awarded one of the NJDEPs matching grants, which provided $2 in funding for every $1 invested by the grant applicant. For this project, the GWLC purchased the FWIs and NJDEP provided the 2:1 cash match in order for the GWLC to implement additional HAB prevention and mitigation strategies in critical locations throughout the watershed.

Check out the photos from last month’s installation:

Here are a few more examples of FWI design and installation projects we’ve completed:

Frances Slocum Lake

Officials with the state Department of Conservation and Natural Resources, Luzerne Conservation District, Nanticoke Conservation Club, and students at Rock Solid Academy in Shavertown teamed up with Princeton Hydro to install two floating islands on the lake. They were planted natives to the area, including Green Bulrush, Broadleaf Arrowhead, Blue Flag Iris, Shallow Sedge, and Spotted Joe-Pye.

Princeton Hydro also installed solar-powered aeration systems in the middle of the FWIs. Aeration systems provide additional water quality improvements, help prevent water around the islands from stratifying, promotes “through-column” mixing, and helps to minimize the occurrence of phytoplankton blooms. The use of solar-powered aeration, whether installed on a FWI or along the shoreline, creates a sustainable, cost-effective, zero-energy water treatment solution, and eliminates the need to run direct-wired electrical lines to remote locations. Learn more.

Princeton Hydro also installs solar-powered aeration systems on FWIs, creating a sustainable, cost-effective, holistic water treatment solution.
Harveys Lake

Princeton Hydro, along with project partners, installed five floating wetland islands in Harveys Lake in order to assimilate and reduce nutrients already in the lake. The islands were placed in areas with high concentrations of nutrients, placed 50 feet from the shoreline and tethered in place with steel cables and anchored. A 250-square-foot FWI is estimated to remove up to 10 pounds of nutrients per year, which is significant when it comes to algae. Learn more.

Volunteers install native plants in one of the FWIs installed in Harveys Lake. Photo by: Mark Moran, The Citizen’s Voice.
lake hopatcong

Through a nonpoint source pollution grant awarded by NJDEP to the Lake Hopatcong Commission, Jefferson Township was able to install FWIs in order to deliver better water quality to Ashley Cove and Lake Hopatcong. The primary goal of the project was to reduce high levels of algae-causing phosphorus present in the lake. In each FWI, indigenous plants, Milkweed and Hibiscus, among other vegetation, were planted along with peat and mulch. Learn more.

Casey Hurt, right, and Richard Ampomah maneuver one of two floating wetland islands in Ashley Cove.
Lake Holiday

Two interconnected sets of FWIs were installed in Lake Holiday in the tributary coves of Isaac’s and Yeider’s Creeks. The strategic placement of the islands eliminates interference with normal boat traffic. In order to minimize movement, the FWIs were secured to trees along the bank with coated cable and protective bands and anchored to the lake bottom with submerged concrete blocks. Learn more.

Senior Scientist Katie Walston installs goose netting around the vegetation in order to prevent geese and other unwanted species from feeding on the plants.

Over the coming weeks, our team will be in Asbury Park, New Jersey installing FWIs in Sunset Lake. Stay tuned for more! For additional information about floating wetland islands and water quality management, go here: bit.ly/pondlake.

6 Ways to Celebrate Lakes Appreciation Month

July is Lakes Appreciation Month – a great time of year to enjoy your community lakes and help protect them.

Lakes Appreciation Month was started by North American Lake Management Society (NALMS) to help bring attention to the countless benefits that lakes provide, to raise awareness of the many challenges facing our waterways, and to encourage people to get involved in protecting these precious resources.

“You work and play on them. You drink from them. But do you really appreciate them? Growing population, development, and invasive species stress your local lakes, ponds, and reservoirs. All life needs water; let’s not take it for granted!” – NALMS

Chemical pollutants, stormwater runoff, hydrocarbons, invasive aquatic species, and climate change are just a few of the the serious threats facing lakes and other freshwater habitats. So what can you do to to help?


We’ve put together six tips to help you celebrate Lakes Appreciation Month and get involved in protecting your favorite lakes:

1. Join the “Secchi Dip-In” contest

The “Secchi Dip-In” is an annual citizen science event where lake-goers and associations across North America use a simple Secchi disk to monitor the transparency or turbidity of their local waterway. Created and managed by NALMS, volunteers have been submitting information during the annual Dip-In since 1994. Get all the Dip-In details here.

2. Monitor and report algae blooms

With the BloomWatch App, you can help the U.S. Environmental Protection Agency understand where and when potential harmful algae blooms (HABs) occur. HABs have the potential to produce toxins that can have serious negative impacts on the health of humans, pets, and our ecosystems. Click here to learn more and download the app here. For more information on HABs, check out our recent blog.

3. Commit to keeping your lake clean

Commit to keeping your lake clean: Volunteers play a major role in maintaining the health and safety of community waterways. If you’re interested in helping to conserve and protect your water resources, you can start by cleaning up trash. Choose a waterbody in your community; determine a regular clean-up schedule; and stick to it! Cleaning your neighborhood storm drains really helps too; click here to find out how.

Photo: Santiago Mejia, The Chronicle
4. support your local lake

You can help support your favorite lake by joining or donating to a lake or watershed association. As an organized, collective group, lake associations work toward identifying and implementing strategies to protect water quality and ecological integrity. Lake associations monitor the condition of the lake, develop lake management plans, provide education about how to protect the lake, work with the government entities to improve fish habitat, and much more.

5. Get outside and enjoy (safely)

There are countless ways to enjoy and appreciate your community lakes. During Lakes Appreciation month, take photos that illustrate how you appreciate your community lakes, share them on social media using the hashtag: #LakesAppreciation, and hopefully you’ll inspire others to show their Lake Appreciation too.

6. ENTER the Lakes Appreciation Challenge

NALMS invites you to participate in its social media photo contest, titled “Show Your Lakes Appreciation Challenge.” To participate: Take a picture of yourself or someone you know enjoying or working on a lake or reservoir during July. And, upload the photo to Facebook, Instagram and/or Twitter using a descriptive caption and the #LakesAppreciation hashtag. Three winners will be determined via a raffle and announced via social media on Monday, August 3rd. Learn more.

fishing on lake

To ensure you’re staying safe while participating in Lakes Appreciation Month and all outdoor activities, please be sure to follow local regulations and the CDC’s recommended COVID-19 guidelines.

To learn more about NALMS and get more ideas on how to celebrate your local lakes, go here: https://www.nalms.org. If you’re interested in learning more about Princeton Hydro’s broad range of award-winning lake management services, go here: http://bit.ly/pondlake.

 

Analyzing Mitigation Strategies for Flood-Prone Philadelphia Community

Photo from Eastwick Friends and Neighbors Coalition

Hydrology is the study of the properties, distribution, and effects of water on the Earth’s surface, in the soil and underlying rocks, and in the atmosphere. The hydrologic cycle includes all of the ways in which water cycles from land to the atmosphere and back. Hydrologists study natural water-related events such as drought, rainfall, stormwater runoff, and floods, as well as how to predict and manage such events. On the application side, hydrology provides basic laws, equations, algorithms, procedures, and modeling of these events.

Hydraulics is the study of the mechanical behavior of water in physical systems. In engineering terms, hydraulics is the analysis of how surface and subsurface waters move from one point to the next, such as calculating the depth of flow in a pipe or open channel. Hydraulic analysis is used to evaluate flow in rivers, streams, stormwater management networks, sewers, and much more.

Combined hydrologic and hydraulic data, tools, and models are used for analyzing the impacts that waterflow – precipitation, stormwater, floods, and severe storms – will have on the existing infrastructure. This information is also used to make future land-use decisions and improvements that will work within the constraints of the hydrologic cycle and won’t exacerbate flooding or cause water quality impairment.

Simply put, hydrologic and hydraulic modeling is an essential component of any effective flood risk management plan.

Putting Hydrologic & Hydraulic Analysis to Work in Philadelphia

Eastwick, a low-lying urbanized neighborhood in Southwest Philadelphia, is located in the Schuylkill River Watershed and is almost completely surrounded by water: The Cobbs and Darby creeks to the west, the Delaware River and wetlands to the south, and the Schuylkill River and Mingo Creek to the east. The community is at continual risk of both riverine and coastal flooding, and faces an uncertain future due to sea level rise and riverine flooding exacerbated by climate change.

Princeton Hydro, along with project partners KeystoneConservation and University of Pennsylvania, conducted an analysis of Eastwick, the flood impacts created by the Lower Darby Creek, and the viability of several potential flood mitigation strategies.

Flood mitigation approaches can be structural and nonstructural. Structural mitigation techniques focus on reconstructing landscapes, including building floodwalls/seawalls and installing floodgates/levees. Nonstructural measures work to reduce damage by removing people and property out of risk areas, including zoning, elevating structures, and conducting property buyouts.

For Eastwick, studying stream dynamics is a key component to determining what type of flood mitigation strategies will yield the most success, as well as identifying the approaches that don’t work for this unique area.

Princeton Hydro Senior Ecologist Christiana Pollack CFM, GISP participated in a workshop for Eastwick residents held by CCRUN and the Lower Darby Creek team. The goal of the workshop was to get the community’s input on the accuracy of the predictive models.Princeton Hydro’s study focused on the key problem areas in Eastwick: the confluence of Darby Creek and Cobbs Creek; a constriction at Hook Road and 84th Street; and the Clearview Landfill, which is part of the Lower Darby Creek Superfund site. Additionally, the study sought to answer questions commonly asked by community members related to flooding conditions, with the main question being: What impact does the landfill have on area flooding?

The built-up landfill is actually much higher than the stream bed, which creates a major disconnection between the floodplain and the stream channel. If the landfill didn’t exist, would the community still be at risk? If we increased the floodplain into the landfill, would that reduce neighborhood flooding?

Princeton Hydro set out to answer these questions by developing riverine flooding models primarily using data from US Army Corps of Engineers (USACE), Federal Emergency Management Agency (FEMA), The National Oceanic and Atmospheric Administration (NOAA), and NOAA’s National Weather Service (NWS). FEMA looks at the impacts of 1% storms that are primarily caused by precipitation events as well as coastal storms and storm surge. NOAA looks at the impacts of hurricanes. And, NOAA’s NWS estimates sea, lake and overland storm surge heights from hurricanes.

This is an example of a 2D model showing where the water is originating, how the water flows through the neighborhood, moves to the lower elevations, and eventually sits.

This is an example of a 2D model showing where the water is originating, how the water flows through the neighborhood, moves to the lower elevations, and eventually sits.

The models used 2D animation to show how the water flows in various scenarios, putting long-held assumptions to the test.

The models looked at several different strategies, including the complete removal of the Clearview Landfill, which many people anticipated would be the silver bullet to the area’s flooding. The modeling revealed, however, that those long-held assumptions were invalid. Although the landfill removal completely alters the flood dynamics, the neighborhood would still flood even if the landfill weren’t there. Additionally, the modeling showed that the landfill is actually acting as a levee for a large portion of the Eastwick community.

This model was developed to illustrate how the removal of the landfill impacts waterflow through the Eastwick community.

This model was developed to illustrate how the removal of the landfill impacts waterflow through the Eastwick community.

Ultimately, the research and modeling helped conclude that for the specific scenarios we studied, altering stream dynamics – a non-structural measure – is not a viable flood mitigation strategy.

The USACE is currently undergoing a study in collaboration with the Philadelphia Water Department to test the feasibility of a levee system (a structural control measure), which would protect the Eastwick community by diverting the flood water. Funding for the study is expected to be approved in the coming year.

Take a Deeper Look at Eastwick Flood Mitigation Efforts

There are many studies highlighting flood mitigation strategies, environmental justice, and climate change vulnerability in Eastwick. Princeton Hydro Senior Project Manager and Senior Ecologist, Christiana Pollack CFM, GISP, presented on the flooding in Eastwick at the Consortium for Climate Risk in the Urban Northeast Seminar held at Drexel University. The seminar also featured presentations from Michael Nairn of the University of Pennsylvania Urban Studies Department, Ashley DiCaro of Interface Studios, and Dr. Philip Orton of Stevens Institute of Technology.

You can watch the full seminar here:

For more information about Princeton Hydro’s flood management services, go here: http://bit.ly/PHfloodplain.

Ecological Uplift in an Urban Setting

The City of Elizabeth, the fourth most populous in New Jersey, is not exactly the first place that comes to mind when envisioning a wild landscape. This bustling urban area is well known for its Port Newark-Elizabeth Marine Terminal and the Philips 66 Bayway Refinery, and sits at the intersection of several major roadways like the NJ Turnpike and the Goethals Bridge. The landscape, which was once teeming with dense wetlands and associated habitats, is now heavily urbanized with a vast mix of residential, commercial, and industrial properties. The largely channelized Elizabeth River courses through the city for 4.2 miles before draining into the Arthur Kill waterway. However, in this 14-square mile city, native flora and fauna are taking root again thanks to ecological restoration and mitigation efforts.

Urban landscapes like Elizabeth can pose significant challenges for restoration efforts, but they also provide an array of opportunity for significant ecological uplift.

In 2004, Princeton Hydro was retained to restore an 18-acre site adjacent to the Elizabeth Seaport Business Park, which is located in an area that was once part of a large contiguous wetland system abutting Newark Bay. The site was comprised of a significantly disturbed mosaic of wetland and upland areas and a monoculture of Phragmites australis, also known as Common Reed, on historic fill. Historic fill consists of non-native material, historically placed to raise grades, and typically contains contaminated material not associated with the operations of the site on which it was placed.

The highly invasive Phragmites australis had overtaken most of the wetland areas, and the upland woodland areas only contained four tree species, mostly Eastern Cottonwood, with very low wildlife value. The 18-acre site had huge potential but was significantly degraded and was being vastly underutilized. Overall, the mitigation plan focused on the enhancement of existing wetland and transition areas to increase the area’s wildlife value through the establishment of a more desirable, diverse assemblage of native species subsequent to eradication of non-native-invasive species.

2005 (Before Plantings)
2019
In 2004, Prologis hired Princeton Hydro to restore an 18-acre area adjacent to the Elizabeth Seaport Business Park, which a significantly disturbed and degraded mosaic of wetland and upland areas. This project serves as an example of how degraded urban areas can be successfully rehabilitated and the land’s natural function restored and enhanced.

The freshwater wetland aspect of the mitigation plan, which included inundated emergent, emergent, and forested habitat, was designed to be a combination of wetland creation (2.40 acres) and enhancement (8.79 acres), emphasizing the establishment of more species rich wetlands in order to increase biodiversity and improve the site’s wildlife food value.

The upland forest aspect of the mitigation plan involved the enhancement of 5.40 acres and creation of 1.45 acres of upland forest to foster the development of a species rich and structurally complex upland forest. The upland areas targeted for enhancement/creation consisted of areas where woody vegetation was lacking or forested areas that were dominated by eastern cottonwood.

2008
2019
The 18-acre site in Elizabeth, NJ had huge potential but was significantly degraded and was being vastly underutilized. The mitigation plan emphasized the establishment of more species rich wetlands in order to increase biodiversity and improve the site’s wildlife habitat value.

The project team worked to remove Phragmites australis from the site utilizing a combination of herbicide and mechanical removal techniques. Once the Phragmites australis was cleared, the team installed 27,000 two-inch native herbaceous plant plugs in the wetland portions of the mitigation site, and 2,705 native trees/shrubs throughout the site.

In order to ensure the continued success of the mitigation project, monitoring is regularly conducted at the site. A monitoring report conducted at the end of 2019 revealed a plethora of well-established habitat areas, a diverse community of plant and tree species, and a thriving, highly-functional landscape.

2004 (Before Plantings)
september 2019
In 2004, before the restoration work began, the site consisted of degraded Phragmites australis dominated wetlands and an urban woodland area dominated by Eastern cottonwood. The planting component of the mitigation project commenced in 2015, and the installation of all woody plant material began Fall 2015 and was completed in Fall 2016. The 2019 Monitoring Report revealed the plantings are well-established and the area is thriving.

Presently, the Elizabeth Seaport Business Park Mitigation Site boasts a variety of productive wildlife habitats that are rare in a highly urbanized setting and provides valuable ecosystem services, including sediment retention and roosting, foraging, and nesting opportunities for both resident and migratory bird species with over 150 bird species identified within the mitigation site.

2008
2019
The Elizabeth Seaport Business Park site was comprised of a monoculture of Phragmites australis, also known as Common Reed. The mitigation plan focused on enhancing the existing wetland by eradicating non-native-invasive plant species, like Phragmites, and establishing more diverse population of productive, native species with high ecological value.

This project serves as an example of how degraded urban areas can be successfully rehabilitated and the land’s natural function restored and enhanced.  If you’d like to learn more about this project from our Natural Resources Senior Project Manager Michael Rehman, check out the video of his presentation at the 2020 Delaware Wetlands Conference below.

We’re at the Delaware Wetlands Conference and our Senior Project Manager, Michael Rehman, is presenting on a successful urban wetland restoration in Elizabeth, NJ.

Posted by Princeton Hydro on Thursday, January 30, 2020

 

If you’re interested in learning more about our wetland restoration and mitigation services, go here!

FREE DOWNLOADS: Mid-Atlantic Stream Restoration Conference Presentations

The Resource Institute hosted its 9th Annual Mid-Atlantic Stream Restoration Conference in Baltimore, Maryland, where water resource professionals, researchers, and practitioners come together for three days to share ideas and learn about stream restoration planning, assessment, design, construction, evaluation, and other topical stream issues. The conference, which was themed Building Resilient Streams in the Mid-Atlantic and Northeast regions, included presentations, discussions, exhibits, and pre-conference workshops. Princeton Hydro participated in three presentations on a variety of topics. Below, we provide a synopsis and free download of each presentation:

Innovative Design and Funding Approaches for Dam Removal Projects Where an Unfunded Mandate Exists

Lead Presenter: Kirk Mantay, PWS, GreenTrust Alliance, Inc.
Co-Authors: Geoffrey Goll, P.E.; Princeton Hydro President; John Roche, Maryland Department of Environment; and Brett Berkley, GreenVest.

The presentation provides a detailed look at the removal of the Martin Dam in Fallston, Maryland, and how project partners were able to drastically expand the footprint of this emergency dam removal to generate enough ecological restoration benefits to adequately fund the dam removal itself.

The Martin Dam was constructed in 1965 as part of USDA’s sustainable farms pond construction initiative, which promoted aquaculture and subsistence fish production on small farms across the region as an income source for agricultural producers. Dam-related impacts included the permanent loss of spring-fed sedge wetlands, ditching of forested floodplain wetlands, pollution from stream bank entrenchment, and thermal impacts to a wild brook trout population downstream.

Overtime, the dam structure began to degrade. With each state and local agency inspection that was conducted, the dam increased in hazard category. In 2016, the Maryland Department of the Environment (MDE) was forced to list the dam as a, “public safety hazard at risk of immanent failure.” The landowner, unable to fund the dam removal, contacted GreenTrust Alliance (GTA), a regional green infrastructure nonprofit organization, for help.

By emphasizing the ecological benefits of restored wetlands and streams above and below the dam as well as the critical public safety hazard faced by residents and motorists downstream, GTA, in partnership with Princeton Hydro and GreenVest, was able to secure restoration funding for the site. The design and permitting was lead by Princeton Hydro, and the dam was safely breached as part of restoration construction in January 2019.

Learn more and download the full presentation.

 

Columbia Lake Dam Removal; Using Drones for Quantitative Evaluation of River Restoration

Lead Presenter: Beth Styler-Barry of The Nature Conservancy
Co-Authors from Princeton Hydro: Geoffrey Goll, P.E., President; Casey Schrading, EIT, Staff Engineer; Kelly Klein, Senior Project Manager, Natural Resources; and Christiana Pollack, CFM, GISP, Senior Project Manager, Environmental Scientist.

In order to explore the use of drone or UAV technology to evaluate the effects of dam removals, the presentation showcases the Columbia Lake Dam removal, the largest dam removal in New Jersey to date.

The Columbia Lake Dam, built in 1909, was 18 feet high, 330 feet long dam, and stretched more than 1.5 miles on the Paulins Kill less than 0.25 miles upstream from its confluence with the Delaware River. As part of The Nature Conservancy’s (TNC) mission to improve the quality of the Paulins Kill, removing this “first blockage” was the cornerstone of the larger mission. Princeton Hydro served as the engineer-of-record, designing and permitting this project. Dam removal activities commenced in 2018 and were finalized in 2019. Its removal opens 10 miles of river for fish migration and improves recreation access, floodplain reconnection, habitat enhancement and higher water quality.

TNC will conduct five years of monitoring, a vitally important component of this project, to determine long-term ecological uplift, short-term positive and negative effects, and to develop data to provide information for future dam removals. And, as a result of the programmable and repeatable nature of drone flight paths, such monitoring will be able to be conducted for years and decades, producing invaluable data for research and future project design.

The presentation reviews the various parameters investigated, the results and significance of the data retrieved, and recommendations for the use of drone technology for future ecosystem restoration projects.

Learn more and download the full presentation.

Modeling 3D Rivers in AutoCAD to Enhance Design and Deliverables

Lead Presenter: Daniel Ketzer, PE, Princeton Hydro Senior Project Manager, River Restoration
Co-Authors from Princeton Hydro: Eric Daley, Water Resources Engineer; Cory Speroff, MLA, ASLA, CBLP, Landscape Designer; and Sumantha Prasad, PE, ENV SP, Water Resource Engineer

This presentation provides an overview on how to create 3D river models based on geomorphic input to enhance the overall accuracy and quality of a river restoration project.

In river restoration, the proposed geometry of the river channel is the key part of the design. It impacts earthwork, utility conflicts, plan set layout, and many other aspects of the project. In larger projects with reaches measuring thousands of feet and greater, manual grading is extremely time consuming and tedious; and determining the entire implication of the proposed design is difficult to achieve when simply analyzing proposed cross-sections and profiles. To increase efficiency and maintain uniformity throughout the subject reach developing a 3D-surface model of the proposed restoration reduces design time and increases quality. AutoCAD Civil 3D can be used to convert the proposed profiles and cross-sections from a geomorphic design into a 3D surface of the river corridor.

The presentation goes through the key steps that need to be taken and strategic questions that need to be asked when modeling 3D rivers in AutoCAD along with important tips and reminders.

Learn more and download the full presentation.

Stay tuned for our Spring Events Spotlight to learn how you can participate in upcoming environmental events! Click here to read more about Princeton Hydro’s river restoration services.

Setting the Precedent: Blue Acres Floodplain Restoration in Linden

The City of Linden, located 13 miles southwest of Manhattan in Union County, New Jersey, is a highly urbanized area with a complex mix of residential, commercial, and industrial land uses. Originally settled as farmland on broad marshes, the City has deep roots in industrial production that emerged in the 19th century, and its easily accessible location on the Arthur Kill tidal straight helped fuel this industrial development.

Now, the City of Linden, which is home to more than 40,000 people, is considered a transportation hub: it has three major highways running through it (the New Jersey Turnpike, Route 1, and Route 27); its rail station provides critical commuter and industry access; the Linden Municipal Airport is a gateway to the NY/NJ metropolitan area; and its access point on the Arthur Kill is used by shipping traffic to the Port Authority of NY and NJ.

Unfortunately, the industrial boom left a legacy of pollution in the city, so much, that the Tremley Point Alliance submited an official Envionmental Justice Petition to the state. In 2005, the New Jersey Environmental Task Force selected the community for the development of an Environmental Justice Action Plan and listed it as one of six environmental justice communites in New Jersey.

As do many urban municipalities, Linden suffers severe flooding from heavy rains and storms. One of the significant sources of flood water threatening the City comes from stormwater runoff.

Like other communities in the Arthur Kill Watershed, Linden also suffers severe flooding from heavy rains and storms with one of the significant sources of flood water coming from stormwater runoff. Due to a high percentage of impervious cover from houses, roadways, and sidewalks, even small rain events generate a significant amount of stormwater runoff. Over time, these conditions have been exacerbated by the historic loss of coastal wetlands and outdated infrastructure. Nuisance flooding is especially problematic as runoff cannot drain from the area at a sufficient rate to prevent flooding during normal or elevated tidal conditions. Very simply, heavy rainfall is one factor contributing to recurring flooding.

In 2012, Hurricane Sandy caused wide-spread destruction throughout New Jersey and the entire eastern seaboard. The City of Linden was hard hit, and the City’s Tremley Point neighborhood was especially storm-ravaged. Tremley Point, a low-lying community of about 275 homes located at the headwaters of Marshes Creek and in the 100-year floodplain of the Rahway River, is regularly flooded during normal rain events. During Hurricane Sandy, local news outlets reported that a 15-foot tidal surge overtook Tremley Point homes, destroyed roads, and washed up hazardous material such as a 150-gallon diesel tank.

To help communities like Tremley Point recover, the New Jersey Department of Environmental Protection (NJDEP) launched the Blue Acres program under which NJDEP purchases homes from willing sellers at pre-Sandy market values, so residents in areas of repetitive and catastrophic flooding can rebuild their lives outside flood-prone areas. Structures are demolished and the properties are permanently preserved as open space for recreation or conservation purposes. The program began in 1995 and expanded with federal funding after Sandy. The goal of the Blue Acres Program is to dramatically reduce the risk of future catastrophic flood damage and to help families to move out of harm’s way.

As part of the NJDEP Blue Acres Program, Princeton Hydro, in collaboration with the City of Linden, Rutgers University, NJDEP, Phillips 66, National Fish and Wildlife Foundation, New Jersey Corporate Wetlands Restoration Partnership, and Enviroscapes, has undertaken one of the first ecological restoration projects within Blue Acres-acquired properties, which are located in the Tremley Point neighborhood. This project increases storm resiliency by reducing flooding and stormwater runoff by improving the ecological and floodplain function within the former residential properties acquired by the NJDEP Blue Acres Program.

The City of Linden Blue Acres restoration project increases storm resiliency by reducing flooding and stormwater runoff by improving the ecological and floodplain function within the former residential properties acquired by the NJDEP Blue Acres Program.

The project includes the development and implementation of an on-the-ground green infrastructure-focused floodplain enhancement design involving the restoration of native coastal floodplain forest and meadow, as well as floodplain wetlands. The restored area provides natural buffering to storm surge and enhances floodplain functions to capture, infiltrate, store, and slow excess stormwater to reduce the risk of future flood damage. In addition, it restores natural habitat and provides public recreation access on NJDEP Blue Acres property.

The design includes re-planting the parcels and the installation of a walking path through part of the area. It also includes the creation of a floodplain bench for the adjacent drainage ditch, an unnamed tributary to Marshes Creek. A floodplain bench is a low-lying area adjacent to a stream or river constructed to allow for regular flooding in these areas. Site improvements include grading of the floodplain bench and minor depressional area; 6-12-inches of tilling, soil amendment, and planting within the planting area; and construction of the gravel pathway.

The project will result in valuable environmental and community benefits to the area, including an annual reduction in stormwater runoff of 4.1 million gallons. This represents a 45% reduction in stormwater runoff. Restoration of the floodplain will also help reduce community vulnerability to storms. The hope is that this project will be a model that fosters more floodplain restoration projects in the future.

For more information on the Blue Acres Program, please visit the DEP website.