Delaware River Watershed Forum Participants Tour Musconetcong River Dam Removals

The 7th Annual Delaware River Watershed Forum, a two-day conference hosted by The Coalition for the Delaware River Watershed, brought together organizations, consultants, and individuals spanning the four watershed states of PA, NY, NJ, and DE. This year’s Forum included presentations, interactive discussions, capacity-building workshops, and site visits that highlighted local conservation projects.

One of the site visits, led by Musconetcong Watershed Association (MWA) Executive Director Alan Hunt, toured dam removal sites along the Musconetcong River. The field trip visited the Finesville Historic District, where a dam was removed in 2012, and the village of Warren Glen, where the Hughesville dam was removed in 2016. Trip participants heard from project partners including Princeton Hydro President Geoff Goll, P.E., Beth Styler Barry of New Jersey Nature Conservancy,  Dale Bentz of RiverLogic Solutions, Beth Frieday of U.S. Fish and Wildlife Service, Jacob Helminiak of U.S Army Corps of Engineers, and Christine Hall of USDA Natural Resources Conservation Service.

“We really appreciate everyone who, despite the rainy weather, participated in the Musconetcong River Restoration field trip to learn about how dam removals are helping to restore the river back to it’s natural free-flowing state and the numerous resulting environmental benefits,” said Geoff. “This river restoration work exemplifies how a diverse group of public and private entities can work together to overcome challenges and achieve tremendous success.”

Princeton Hydro President Geoff Goll, P.E. provides field trip participants with information about the Hughesville Dam removal project and the adaptive management work currently happening at the site.Princeton Hydro has been working with MWA in the areas of river restoration, dam removal, and engineering consulting since 2003, when the efforts to remove the Gruendyke Mill Dam in Hackettstown, NJ began. To date, Princeton Hydro has investigated, designed, and permitted five dam removals along the Musconetcong River, the most recent being the Hughesville Dam. This 16’ dam was removed in 2016 and, one year later in 2017, American Shad returned to the site for the first time in at least 100 years, and the removal was credited by the State as a contributing factor for the increase in Delaware River shad population. There is an ongoing project to monitor fishery and aquatic habitat recovery at the site. The next Musconetcong dam targeted for removal is the 32-foot high Warren Glen Dam. It is the largest dam in the river; by comparison, the Hughesville Dam was 15-feet tall.

The Coalition for the Delaware River Watershed was formed in 2012, the Coalition works to raise awareness of the river and its surrounding landscape by bringing together groups already working to restore degraded resources, safeguard vulnerable assets, and educate their communities. The Coalition is committed to protecting and restoring the Delaware River, its tributaries, and more than 13,500 square miles of forests, wetlands, communities, and other distinctive landscapes in the watershed so that clean water and valued resources are secured for generations to come.

MWA is an independent, non-profit organization dedicated to protecting and improving the quality of the Musconetcong River and its Watershed, including its natural and cultural resources. Members of the organization are part of a network of individuals, families and companies that care about the Musconetcong River and its Watershed, and are dedicated to improving the watershed resources through public education and awareness programs, river water quality monitoring, promotion of sustainable land management practices and community involvement.

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of dozens of small and large dams in the Northeast. To learn more about our fish passage and dam removal engineering services, visit: bit.ly/DamBarrier. To learn more about our Musconetcong River restoration work, go here:

The Return of the American Shad to the Musconetcong River

 

 

Sediment Testing on the St. Lawrence Seaway

Way up in Northern New York, the St. Lawrence River splits the state’s North Country region and Canada, historically acting as an incredibly important resource for navigation, trade, and  recreation. Along the St. Lawrence River is the St. Lawrence Seaway, a system of locks, canals, and channels in both Canada and the U.S. that allows oceangoing vessels to travel from the Atlantic Ocean all the way to the Great Lakes.

Recently, the St. Lawrence Seaway Development Corporation (SLSDC) contracted Princeton Hydro to conduct analytical and geotechnical sampling on material they plan to dredge out of the Wiley-Dondero Canal. Before dredging, sediment and soils have to be tested to ensure their content is suitable for beneficial reuse of dredged material. In August, our Geologist, Marshall Thomas and Environmental Scientist, Pat Rose, took a trip up north to conduct soil sampling and testing at two different sites within the canal near Massena and the Eisenhower Lock, which were designated by the SLSDC. The first site was at the SLSDC Marine Base, which is a tug/mooring area directly southwest of Snell Lock. The second location was directly northeast of the Eisenhower Lock, which is also used as a mooring area. Both of these sites require dredging in order to maintain mooring access for boat traffic navigating the channel.

During this two-day sampling event, our team, which also included two licensed drillers from Atlantic Testing Laboratories, used a variety of equipment to extract the necessary samples from the riverbed. Some of the sampling equipment included:

  • Vibracoring equipment: this sampling apparatus was assembled on Atlantic Testing’s pontoon boat. To set up the vibracore, a long metal casing tube was mounted on the boat more than 10 feet in the air. The steel casing was lowered through the water approximately 17-20 feet down to the mudline. From there, the vibracore was then vibrated through the sediment for an additional 4-6 feet. For this project, vibracore samples were taken at 4 feet in 10 different locations, and at 6 feet in 3 different locations.

  • A track mounted drill rig: this rig was positioned along the shoreline to allow advancement of a standard geotechnical test boring close to existing sheet piling. Advancement of the boring was done by way of a 6-inch hollow stem auger. As the auger was advanced, it resembled a giant screw getting twisted into the ground. This drilling method allows the drilling crew to collect soil samples using a split spoon sampler, which is a 2-foot long tubular sample collection device that is split down the middle. The samplers were collected by driving the split spoon into the soil using a 140 lb drop hammer.

For our team, conducting sampling work on the St. Lawrence Seaway was a new experience, given most of our projects occur further east in the Mid-Atlantic region. The most notable difference was the hardness of the sediment. Because the St. Lawrence River sediments contain poorly sorted, dense glacial till, augering into it took a little more elbow grease than typical sediments further south do.  The St. Lawrence River is situated within a geological depression that was once occupied by glaciers. As the glaciers retreated, they were eventually replaced by the Champlain Sea, which flooded the area between 13,000 and 9,500 years ago. Later on, the continent underwent a slight uplift, ultimately creating a riverlike watercourse that we now deem the St. Lawrence River. Because it was once occupied by a glacier, this region is full of glacial deposits.

For this project, our team was tasked with collecting both geotechnical and analytical samples for physical and analytical testing. Physical testing included grain size analysis, moisture content, and Atterberg limit testing. Grain size analysis helps determine the distribution of particle sizes of the sample in order to classify the material, moisture content testing determines exactly that — how moist the sediment is, and Atterberg limits help to classify the fines content of the materials as either silt or clay. Analytical testing included heavy metals, pesticides, volatile organic compounds, and dioxins.

Our scientists were responsible for logging, testing, and providing a thorough analysis of fourteen sampling locations. The samples collected from the vibracore tubes filled with sediment were logged and spilt on-shore. In order to maintain a high level of safety due to the possible presence of contaminants, all of the sampling equipment was decontaminated. This process involves washing everything with a soapy water mixture, a methanol solution, and 10% nitric acid solution.

The samples collected at each vibrocore location were split into multiple jars for both analytical and physical testing. The physical test samples were placed into air and moisture tight glass sample jars and brought to our AASHTO accredited soils laboratory in Sicklerville, New Jersey for testing. The analytical samples were placed into airtight glass sample jars with Teflon-lined caps. These samples were then placed into an ice-filled cooler and sent to Alpha Analytical Laboratories for the necessary analytical testing.

Once all the laboratory testing was completed, a summary report was developed and presented to the client. This report was made to inform the SLSDC of the physical properties of each sediment sample tested and whether contaminants exceeded threshold concentrations as outlined in the New York State Department of Environmental Conservation (NYSDEC) Technical & Operation Guidance Series (TOGS) 5.1.9. This data will ultimately be used by the SLSDC to determine the proper method for dredging of the material and how to properly dispose of the material.

Princeton Hydro provides soil, geologic, and construction materials testing to both complement its water resources and ecological restoration projects and as a stand-alone service to clients. Our state-of-the-art Soils Testing Laboratory is AASHTO-accredited to complete a full suite of soil, rock, and construction material testing for all types of projects. For more information, go here: http://bit.ly/2IwqYfG 

DIY: Protecting Water Quality in Your Community

There are lots of things we can do to preserve our precious water resources. Reducing stormwater pollution in our neighborhoods is something everyone can take part in. Storm drain cleaning is a great place to start!

DIY Storm Drain Cleaning

Urbanization has fundamentally altered the way that water moves through the landscape. Stormwater that doesn’t soak into the ground runs along streets and parking lots and picks up pollutants. Much of the pollution in our nation’s waterways comes from everyday materials like fertilizers, pesticides, motor oil, and household chemicals. Rainwater washes these substances from streets, yards and driveways into storm drains.

It’s a common misconception that storm drains lead to wastewater treatment plants. In actuality, storm drains rarely lead to treatment plants and instead stormwater systems carry untreated water directly to the nearest waterway. This polluted runoff can have negative impacts on water quality, overstimulate algal growth (both toxic and non-toxic), harm aquatic species and wildlife, and cause trash and debris to enter our lakes, streams, rivers and oceans.

https://www.middlesexcentre.on.ca/Public/Stormwater

We can all do our part to improve and preserve water resources in our community and beyond!

Keeping neighborhood storm drains cleaned is one simple step. Removing debris that collects in nearby stormwater catch basins, storm drains and along curbs promotes cleaner runoff, reduces the potential for flooding, and decreases the amount of pollution and trash entering our waterways.

Follow these simple steps for DIY storm drain cleaning:

  1. Photo: Santiago Mejia, The ChronicleRake/sweep and discard debris that has collected on top of the storm grate and in curbside rain gutters. Please note: If you notice a major blockage or issue with a storm drain, contact your local municipality immediately.
  2. Use a scrub brush or toilet bowl scrubber to remove debris that may be stuck to the storm grate.
  3. Adopt a storm drain(s) and maintain a regular cleaning schedule: Make a note on your calendar each quarter to clean and clear debris from storm drains nearby your home or workplace. And, make a habit of checking your storm drains after rainstorms when clogging is most common.
  4. Host a community clean-up day that includes trash pick-up, storm drain cleaning, and disseminating information on the impacts of stormwater runoff and what we can do to help.
  5. Consider contacting your local watershed association or municipality about getting drain markers installed on storm drains throughout the community. The markers act as a continued public reminder that anything dumped into a storm drain eventually ends up in our precious waterways downstream.

Remember: Small actions lead to big achievements in protecting water quality. 

REGISTER: Green Infrastructure Stormwater Management One-Day Course

REGISTRATION IS STILL OPEN FOR MONTCLAIR STATE UNIVERSITY’S GREEN INFRASTRUCTURE STORMWATER MANAGEMENT ONE-DAY CONTINUING EDUCATION COURSE BEING HELD ON SEPTEMBER 20, 2019 FROM 8 AM – 4 PM

Are you a consultant, planner, municipal representative, community leader, or project manager seeking to learn more about Green Stormwater Infrastructure & Management Techniques? This one-day course is for YOU!

Green infrastructure techniques have increasingly become the “go to” strategy to address flooding, water quality, and environmental impacts caused by stormwater runoff. Whether it be rain gardens or regional bioretention basins, infiltration basins or other large-scale bio engineered BMPs, green infrastructure is being implemented everywhere from suburban subdivisions to urban redevelopment sites. Unfortunately, while growing popular, these techniques are often misapplied, improperly constructed, or inadequately maintained.

This innovative one-day class focuses on the proper design and implementation of green infrastructure BMPs, as well as their special maintenance requirements. The course curriculum includes interactive presentations, case studies and project examples.

This year’s course will cover the following topics and more:

  • The Application and Advantages of Green Infrastructure Stormwater Management Techniques
  • Design and Construction of Infiltration Basins
  • Data Collection Needs: Soil, Geotechnical, and Groundwater Hydrology Data
    Design and Construction of Gravel Wetland Systems
  • Rain Garden Design and Application
  • Green Infrastructure Stormwater Options and Alternative Capping Techniques for Remediation Sites

Dr. Stephen Souza, Princeton Hydro Co-Founder and President of Clean Waters Consulting, LLC, is the faculty coordinator for the course, which also features a lecture by Princeton Hydro’s Green Infrastructure Practice Area Leader Dr. Clay Emerson, PE, CFM.

Course participants will also receive professional credits, including:

  • New Jersey LSRP CECs: 7 Technical CECs (NJ SRPLB Course # 2015-065);
  • New Jersey Professional Engineers: 7 CPCs;
  • New Jersey Board of Architects: 7 hours of CECs;
  • Certified Floodplain Managers: 6.5 CECs; and
  • NJ Public Health Continuing Education Contact Hours: 7 CEs.

Princeton Hydro is proud to partner with Montclair State University and take part in this valuable continuing professional education course. We hope to see you there!

Learn More & Register Today

Managing Urban Stormwater Runoff and Revitalizing Natural Habitat at Harveys Lake

Measuring 630+ acres, Harveys Lake, located in Luzerne County, Pennsylvania, just northeast of Wilkes-Barre, is the largest natural lake (by volume) within the Commonwealth of Pennsylvania, and is one of the most heavily used lakes in the area. It is classified as a high quality – cold water fishery habitat (HQ-CWF) and is designated for protection under the classification.

Since 2002, The Borough of Harveys Lake and the Harveys Lake Environmental Advisory Council  has worked with Princeton Hydro on a variety of lake management efforts focused around maintaining high water quality conditions, strengthening stream banks and shorelines, and managing stormwater runoff.

Successful, sustainable lake management requires identifying and correcting the cause of eutrophication as opposed to simply reacting to the symptoms of eutrophication (algae and weed growth). As such, we collect and analyze data to identify the problem sources and use these scientific findings to develop a customized management plan that includes a combination of biological, mechanical, and source control solutions. Here are some examples of the lake management strategies we’ve utilized for Harveys Lake:

 

Floating Wetland Islands

Floating Wetland Islands (FWIs) are an effective alternative to large, watershed-based natural wetlands. Often described as self-sustaining, FWIs provide numerous ecological benefits. They assimilate and remove excess nutrients, like nitrate and phosphorous, that could fuel algae growth; provide habitat for fish and other aquatic organisms; help mitigate wave and wind erosion impacts; and provide an aesthetic element. FWIs are also highly adaptable and can be sized, configured, and planted to fit the needs of nearly any lake, pond, or reservoir.

Five floating wetland islands were installed in Harveys Lake to assimilate and reduce nutrients already in the lake. The islands were placed in areas with high concentrations of nutrients, placed 50 feet from the shoreline and tethered in place with steel cables and anchored. A 250-square-foot FWI is estimated to remove up to 10 pounds of nutrients per year, which is significant when it comes to algae.

Princeton Hydro worked with the Harveys Lake Environmental Advisory Council and the Borough of Harveys Lake to obtain funding for the FWIs through the Pennsylvania Department of Environmental Protection (PADEP).

 

Streambank & Shoreline Stabilization

Harveys Creek

The shoreline habitat of Harveys Lake is minimal and unusual in that a paved road encompasses the lake along the shore with most of the homes and cottages located across the roadway, opposite the lake. In addition to the lake being located in a highly populated area, the limited shoreline area adds to the challenges created by urban stormwater runoff.

Runoff from urban lands and erosion of streambanks and shorelines delivers nutrients and sediment to Harveys Lake. High nutrient levels in the lake contribute to algal blooms and other water quality issues. In order to address these challenges, the project team implemented a number of small-scale streambank and inlet stabilization projects with big impacts.

The work included the stabilization of the streambank downstream for Harveys Lake dam and along Harveys Creek, the design and installation of a riparian buffer immediately along the lake’s shoreline, and selective dredging to remove sediment build up in critical areas throughout the watershed.

 

Invasive Species Management

Hydrilla (Hydrilla verticillata), an aggressively growing aquatic plant, took root in the lake in 2014 and quickly infected 250 acres of the lake in a matter of three years. If left untreated, hydrilla will grow to the water’s surface and create a thick green mat, which prevents sunlight from reaching native plants, fish and other organisms below. The lack of sunlight chokes out all aquatic life.

In order to prevent hydrilla from spreading any further, Princeton Hydro and SePRO conducted an emergency treatment of the impacted area utilizing the systemic herbicide Sonar® (Fluridone), a clay-based herbicide. SonarOne, manufactured by SePRO, blocks hydrilla’s ability to produce chloroplasts, which in turn halts the photosynthetic process. The low-concentration herbicide does not harm fish, wildlife or people using the lake. Surveys conducted after the treatment showed it was working – the hydrilla had turned white and was dying off. Additional Sonar treatments followed and efforts to eradicate hydrilla in the lake continue.

Dr. Fred Lubnow, our Director of Aquatic Programs, estimates complete eradication of the aquatic plant could take around five years. Everyone can do their part in preventing the spread of this and other invasive species. Boaters and lake users must be vigilant and remove all vegetation from the bottom of watercrafts and trailers.

 

Stormwater Best Management Practices (BMPs)

In 2009, Princeton Hydro developed a stormwater implementation plan (SIP) for Harveys Lake. The goal of the stormwater/watershed-based efforts was to reduce the lake’s existing annual total phosphorus load to be in full compliance with the established Total Maximum Daily Load (TMDL). This TMDL is related to watershed-based pollutant loads from total phosphorus (TP) and total suspended solids (TSS), which can contribute to algal blooms.

A number of structural urban runoff projects were implemented throughout the watershed. This includes the design and construction of two natural stream channel projects restoring 500 linear feet of tributaries and reducing the sediment and nutrient loads entering the lake. A series of 38 urban runoff BMPs, including nutrient separating devices and roadside infiltration, were installed in areas immediately adjacent to the lake to further reduce the loads of nutrients and other pollutants reaching the lake.

The photos below show a stormwater project that was completed in the Hemlock Gardens Section of the Watershed. Hemlock Gardens is a 28-acre section of land located in the southeastern portion of the watershed. It contains approximately 26 homes, has very steep slopes, unpaved dirt roads, and previously had no stormwater infrastructure in place.

Two structural stormwater BMPs were installed:

  • A nutrient separating baffle box, which utilizes a three-chamber basin with screens to collect leaf litter, grass clippings and trash
  • A water polishing unit that provides a platform for secondary runoff treatment

In 1994, Harveys Lake was identified as “impaired” by PADEP due to large algal blooms. In 2014, Harveys Lake was removed from the list of impaired waters. Project partners attribute the recovery of this lake to the stream restoration, urban runoff BMP implementation, and the use of in-lake nutrient reduction strategies.

The Harveys Lake Watershed Protection Plan Implementation Project proved that despite the lake being located in an urbanized watershed, it is possible to implement cost-effective green infrastructure and stormwater retrofit solutions capable of significantly decreasing pollutant loading to the lake.

To learn more about our lake and pond management services or schedule a consultation, visit: http://bit.ly/pondlake.

Four Ways Climate Change Can Affect Your Lake

The Local Effects of Climate Change Observed Through our Community Lakes

Climate change is an enormous concept that can be hard to wrap your head around. It comes in the form of melting ice caps, stronger storms, and more extreme seasonal temperatures (IPCC, 2018). If you’re an avid angler, photographer, swimmer, boater, or nature enthusiast, it’s likely that because of climate change you’ll bear witness to astonishing shifts in nature throughout the greater portion of your lifetime. This is especially true with respect to lakes.

2015-07-07-10-01-20

Lakes are living laboratories through which we can observe the local effects of climate change in our own communities. Lake ecosystems are defined by a combination of various abiotic and biotic factors. Changes in hydrology, water chemistry, biology, or physical properties of a lake can have cascading consequences that may rapidly alter the overall properties of a lake and surrounding ecosystem. Most of the time the results are negative and the impacts severe.

“Managing loads of phosphorous in watersheds is even more important as the East Coast becomes increasingly warmer and wetter thanks to climate change,” said Dr. Fred Lubnow, Director of Aquatics in a recent NJ.com interview. “Climate change will likely need to be dealt with on a national and international scale. But local communities, groups, and individuals can have a real impact in reducing phosphorous levels in local waters.”

Recognizing and monitoring the changes that are taking place locally brings the problems of climate change closer to home, which can help raise awareness and inspire environmentally-minded action.

We put together a list of four inter-related, climate change induced environmental impacts that can affect lakes and lake communities:

1. Higher Temperatures = Shifts in Flora and Fauna Populations

The survival of many lake organisms is dependent on the existence of set temperature ranges and ample oxygen levels. The amount of dissolved oxygen (DO) present in a lake is a result of oxygen diffusion from the atmosphere and its production by algae and aquatic plants via photosynthesis. An inverse relationship exists between water temperature and DO concentrations. Due to the physical properties of water, warmer water holds less DO than cooler water.

This is not good news for many flora and fauna, such as fish that can only survive and reproduce in waters of specific temperatures and DO levels. Lower oxygen levels can reduce their ability to feed, spawn and survive. Populations of cold water fish, such as brown trout and salmon, will be jeopardized by climate change (Kernan, 2015).

358-001-carp-from-churchvilleAlso, consider the effects of changing DO levels on fish that can tolerate these challenging conditions. They will thrive where others struggle, taking advantage of their superior fitness by expanding their area of colonization, increasing population size, and/or becoming a more dominant species in the ecosystem. A big fish in a little pond, you might say. Carp is a common example of a thermo-tolerant fish that can quickly colonize and dominate a lake’s fishery, in the process causing tremendous ecological impact (Kernan, 2010).

2. Less Water Availability = Increased Salinity

Just as fish and other aquatic organisms require specific ranges of temperature and dissolved oxygen to exist, they must also live in waters of specific salinity. Droughts are occurring worldwide in greater frequency and intensity. The lack of rain reduces inflow and higher temperatures promote increased evaporation. Diminishing inflow and dropping lake levels are affecting some lakes by concentrating dissolved minerals and increasing their salinity.

Studies of zooplankton, crustaceans and benthic insects have provided evidence of the consequences of elevated salinity levels on organismal health, reproduction and mortality (Hall and Burns, 2002; Herbst, 2013; Schallenberg et al., 2003). While salinity is not directly related to the fitness or survival rate of all aquatic organisms, an increase in salinity does tend to be stressful for many.

3. Nutrient Concentrations = Increased Frequency of Harmful Algal Blooms

Phosphorus is a major nutrient in determining lake health. Too little phosphorus can restrict biological growth, whereas an excess can promote unbounded proliferation of algae and aquatic plants.

before_strawbridgelake2If lake or pond water becomes anoxic at the sediment-water interface (meaning the water has very low or completely zero DO), phosphorus will be released from the sediment. Also some invasive plant species can actually “pump” phosphorus from the sediments and release this excess into the water column (termed luxurious uptake). This internally released and recycled sedimentary phosphorus can greatly influence lake productivity and increase the frequency, magnitude and duration of algae blooms. Rising water temperatures, declining DO and the proliferation of invasive plants are all outcomes of climate change and can lead to increases in a lake’s phosphorus concentrations and the subsequent growth and development of algae and aquatic plants.

Rising water temperatures significantly facilitate and support the development of cyanobacteria (bluegreen algae) blooms. These blooms are also fueled by increasing internal and external phosphorus loading. At very high densities, cyanobacteria may attain harmful algae bloom (HAB) proportions. Elevated concentrations of cyanotoxins may then be produced, and these compounds seriously impact the health of humans, pets and livestock.

rain-garden-imagePhosphorus loading in our local waterways also comes from nonpoint sources, especially stormwater runoff. Climate change is recognized to increase the frequency and magnitude of storm events. Larger storms intensify the mobilization and transport of pollutants from the watershed’s surrounding lakes, thus leading to an increase in nonpoint source loading. Additionally, larger storms cause erosion and instability of streams, again adding to the influx of more phosphorus to our lakes. Shifts in our regular behaviors with regards to fertilizer usage, gardening practices and community clean-ups, as well as the implementation of green infrastructure stormwater management measures can help decrease storm-related phosphorus loading and lessen the occurrence of HABs.

4. Cumulative Effects = Invasive Species

A lake ecosystem stressed by agents such as disturbance or eutrophication can be even more susceptible to invasive species colonization, a concept coined “invasibility” (Kernan, 2015).

For example, imagine that cold water fish species A has experienced a 50% population decrease as a result of warming water temperatures over ten years. Consequently, the fish’s main prey, species B, has also undergone rapid changes in its population structure. Inversely, it has boomed without its major predator to keep it in check. Following this pattern, the next species level down – species B’s prey, species C – has decreased in population due to intense predation by species B, and so on. Although the ecosystem can potentially achieve equilibrium, it remains in a very unstable and ecologically stressful state for a prolonged period of time. This leads to major changes in the biotic assemblage of the lake and trickle-down changes that affect its recreational use, water quality and aesthetics.

• • •

Although your favorite lake may not experience all or some of these challenges, it is crucial to be aware of the many ways that climate change impacts the Earth. We can’t foresee exactly how much will change, but we can prepare ourselves to adapt to and aid our planet. How to start? Get directly involved in the management of your lake and pond. Decrease nutrient loading and conserve water. Act locally, but think globally. Get out and spread enthusiasm for appreciating and protecting lake ecosystems. Also, check out these tips for improving your lake’s water quality.


References

  1. IPCC. “Summary for Policymakers. “Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.” World Meteorological Organization, Geneva, Switzerland, 32 pp. 2018.
  2. Hall, Catherine J., and Carolyn W. Burns. “Mortality and Growth Responses of Daphnia Carinata to Increases in Temperature and Salinity.” Freshwater Biology 47.3 (2002): 451-58. Wiley. Web. 17 Oct. 2016.
  3. Herbst, David B. “Defining Salinity Limits on the Survival and Growth of Benthic Insects for the Conservation Management of Saline Walker Lake, Nevada, USA.” Journal of Insect Conservation 17.5 (2013): 877-83. 23 Apr. 2013. Web. 17 Oct. 2016.
  4. Kernan, M. “Climate Change and the Impact of Invasive Species on Aquatic Ecosystems.” Aquatic Ecosystem Health & Management (2015): 321-33. Taylor & Francis Online. Web. 17 Oct. 2016.
  5. Kernan, M. R., R. W. Battarbee, and Brian Moss. “Interaction of Climate Change and Eutrophication.” Climate Change Impacts on Freshwater Ecosystems. 1st ed. Chichester, West Sussex, UK: Wiley-Blackwell, 2010. 119-51. ResearchGate. Web. 17 Oct. 2016.
  6. Schallenberg, Marc, Catherine J. Hall, and Carolyn W. Burns. “Consequences of Climate-induced Salinity Increases on Zooplankton Abundance and Diversity in Coastal Lakes”Marine Ecology Progress Series 251 (2003): 181-89. Inter-Research Science Center. Inter-Research. Web.

A Day in the Life of a Stormwater Inspector

Walking through a park isn’t always a walk in the park when it comes to conducting stormwater inspections. Our team routinely spots issues in need of attention when inspecting stormwater infrastructure; that’s why inspections are so important.

Princeton Hydro has been conducting stormwater infrastructure inspections for a variety of municipalities in the Mid-Atlantic region for a decade, including the City of Philadelphia. We are in our seventh year of inspections and assessments of stormwater management practices (SMPs) for the Philadelphia Water Department. These SMPs are constructed on both public and private properties throughout the city and our inspections focus on areas served by combined sewers. 

Our water resource engineers are responsible for construction oversight, erosion and sediment control, stormwater facilities maintenance inspections, and overall inspection of various types of stormwater infrastructure installation (also known as “Best Management Practices” or BMPs).

The throat of a sinkhole observed by one of our engineers while on site.

Our knowledgeable team members inspect various sites regularly, and for some municipalities, we perform inspections on a weekly basis. Here’s a glimpse into what a day of stormwater inspection looks like:

The inspector starts by making sure they have all their necessary safety equipment and protection. For the purposes of a simple stormwater inspection the Personal Protection Equipment (PPE) required includes a neon safety vest, hard hat, eye protection, long pants, and boots. Depending on the type of inspection, our team may also have to add additional safety gear such as work gloves or ear plugs. It is recommended that inspectors hold CPR/First Aid and OSHA 10 Hour Construction Safety training certificates. 

Once they have their gear, our inspection team heads to the site and makes contact with the site superintendent. It’s important to let the superintendent know they’re there so that 1) they aren’t wondering why a random person is perusing their construction site, and 2) in case of an emergency, the superintendent needs to be aware of every person present on the site.

Once they arrive, our team starts by walking the perimeter of the inspection site, making sure that no sediment is leaving the project area. The team is well-versed in the standards of agencies such as the Pennsylvania Department of Environmental Protection, the Pennsylvania Department of Transportation, the New Jersey Department of Environmental Protection, and local County Soil Conservation Districts, among others. These standards and regulations dictate which practices are and are not compliant on the construction site.

After walking the perimeter, the inspection team moves inward, taking notes and photos throughout the walk. They take a detailed look at the infrastructure that has been installed since the last time they inspected, making sure it was correctly installed according to the engineering plans (also called site plans or drainage and utility plans). They also check to see how many inlets were built, how many feet of stormwater pipe were installed, etc.

If something doesn’t look quite right or needs amending, our staff makes recommendations to the municipality regarding BMPs/SMPs and provides suggestions for implementation.

One example of an issue spotted at one of the sites was a stormwater inlet consistently being inundated by sediment. The inlet is directly connected o the subsurface infiltration basin. When sediment falls through the inlet, it goes into the subsurface infiltration bed, which percolates directly into the groundwater. This sediment is extremely difficult to clean out of the subsurface bed, and once it is in the bed, it breaks down and becomes silt, hindering the function of the stormwater basin.

To remedy this issue, our inspection team suggested they install stone around the perimeter of the inlet on three sides. Although this wasn’t in the original plan, the stones will help to catch sediment before entering the inlet, greatly reducing the threat of basin failure.

Once they’ve thoroughly inspected the site, our team debriefs the site superintendent with their findings. They inform the municipality of any issues they found, any inconsistencies with the construction plans, and recommendations on how to alleviate problems. The inspector will also prepare a Daily Field Report, summarizing the findings of the day, supplemented with photos.

In order to conduct these inspections, one must have a keen eye and extensive stormwater background knowledge. Not only do they need to know and understand the engineering behind these infrastructure implementations, they need to also be intimately familiar with the laws and regulations governing them. Without these routine inspections, mistakes in the construction and maintenance of essential stormwater infrastructure would go unnoticed. Even the smallest overlook can have dangerous effects, which is why our inspections team works diligently to make sure that will not happen.

Our team conducts inspections for municipalities and private entities throughout the Northeast. Visit our website to learn more about our engineering and stormwater management services.

 

Volunteers Spruce Up Rain Gardens at Clawson Park

Volunteers recently gathered together at Clawson Park in Ringoes, NJ to install native plants in the park’s large stormwater basin and overhaul two of the park’s rain gardens, removing invasive weeds and planting beneficial native species.

By definition, a rain garden is a shallow depression that is planted with deep-rooted native plants and grasses and positioned near a runoff source to capture rainwater. Rain gardens temporarily store rainwater and runoff, and filter the water of hydrocarbons, oil, heavy metals, phosphorous, fertilizers and other pollutants that would normally find their way to the sewer and even our rivers and waterways. They are a cost effective, attractive, and sustainable way to minimize stormwater runoff. They also help to reduce erosion, promote groundwater recharge, and minimize flooding. Planting native plants helps to attract pollinators and birds and naturally reduces mosquitoes by removing standing water thus reducing mosquito breeding areas.

Once a rain garden has been established, it is low maintenance and typically only requires occasional weeding to remove any invasive species that may have cropped up. The recent volunteer effort, lead by Jack Szczepanski, PhD, Senior Aquatics Scientist, was an important step in maintaining the health and native diversity of Clawson Park’s rain gardens.

An informational sign was also installed at the park. Designed by Princeton Hydro and installed by the East Amwell’s Department of Public Works, the sign describes the benefits of stormwater management and planting native species.

The park’s rain gardens and stormwater basins were originally designed and implemented by Princeton Hydro. Back in 2016, Eagle Scout Brandon Diacont had an idea to beautify Clawson Park and improve the park’s stormwater drainage issues. Princeton Hydro supported his vision by developing, permitting, and implementing a stormwater management project plan, which included the installation of multiple rain gardens throughout the park. In October of 2016, under the guidance of Princeton Hydro’s Landscape Designer Cory Speroff, MLA, ASLA, CBLP, a great group of volunteers gathered together and got to work bringing the project plan to life!

 Photos from 2016 volunteer event:

The Princeton Hydro team has designed and constructed countless stormwater management systems, including rain gardens in locations throughout the Eastern U.S. Click here for more information about our stormwater management services.

Thank you to Patsy Wang Iverson for providing the photos for this blog.

Senior Engineer Kevin Yezdimer Appointed to Chief Operating Officer

We are thrilled to announce a new executive position in the firm, Chief Operating Officer (COO), to which Kevin M. Yezdimer, P.E. was appointed effective July 1, 2019. Most recently, Kevin served as the Director of Geoscience Engineering and Office Manager for the company’s Sicklerville, New Jersey location since joining the firm in 2016.

Princeton Hydro has grown from a small four person idea operating out of a living room to a 65+ person qualified Small Business with five office locations in the Northeast region. Last year, the firm realized record revenue and is projected to continue notable growth due to its strong position in the marketplace of providing innovative and “value-added” ecological and engineering solutions. With Princeton Hydro’s steady growth, this new executive position is essential to optimize operational processes across the firm’s technical practice areas and geographic locations, as well as to best implement their strategic growth plan within the Mid-Atlantic and New England regions.

We are all excited and happy to have Kevin join the Princeton Hydro Executive Team. He has demonstrated leadership and success in executing strategies that are key to our success. Kevin has proven himself to have an intuitive understanding of technical and business practices, and can communicate these often complicated issues into meaningful and comprehensible conversation. Most importantly, Kevin is a true mentor to staff and will be able to support them in his new role,” said Princeton Hydro’s President Geoffrey Goll, P.E.I am proud that we were able to internally find someone to fill this position, and am confident that Kevin will be a great fit. As a firm, we are committed to maintaining the mission and values envisioned by the firm’s founders, including supporting our diverse clientele in the commercial, NGO, and government industries, while maintaining a personal touch and small business culture. This new position is vital to maintaining the stability and continuity of our mission and values.

Kevin is a multidisciplinary professional civil engineer with degrees in both Geology and Civil Engineering. With 14 years of experience as a design consultant and project manager, Kevin has proven his ability to lead others. His move to COO is a testament to all of Kevin’s continued success. In his new role, he will be working hand-in-hand with each practice area, the administration, and the principals to propel the firm forward. He will also work to ensure that the company culture remains driven towards excellence in innovative and integrated science and engineering. As the company continues to grow and mature, Kevin will ensure that the firm remains well-balanced and provide a positive working culture for all employees.

Our firm’s executives have afforded me with a tremendous leadership opportunity; I am truly humbled, honored, and ready to take on the role of Chief Operating Officer for Princeton Hydro,” said Kevin Yezdimer, P.E. “In this new position, I will have the ability to empower our passionate staff to achieve their full potential, unify operational practices, and assure that our business goals and mission are achieved. I’m looking forward to further implementing the vision of the firm’s founders as we continue to grow and evolve.

Kevin resides in Hockessin, Delaware with his wife Kristen, three children, and newly rescued dog Lizzy. Outside of the office, you can find Kevin running, swimming, playing disc golf, performing home improvement projects, following all Philadelphia sports (especially the Eagles), developing his faith, and striving to make the most of each and every day.

 

Employee Spotlight: Meet Our New Team Members

Join us in welcoming ten new team members! We’ve hired four full-time staff and six part-time staff and interns spread throughout our Ringoes, Sicklerville, and Glastonbury offices.

Meet the new team members:

MARCIE ROBINSON, P.E., Senior Project Manager

With nearly two decades of experience in both the private and public sectors, Marcie has extensive knowledge of both facets of the civil engineering world. Her area of expertise includes water resource engineering and more specifically stormwater management, having designed multiple stormwater facilities utilizing best management practices. Marcie has worked on all aspects of land development projects including residential, industrial, commercial, and educational site plans and subdivisions; construction administration; and municipal engineering. She has prepared capital improvement projects for local municipalities and reviewed land development projects for conformance with local ordinances and the NJDEP stormwater regulations.

Outside of work, Marcie enjoys camping, gardening, raising money for various charities, and spending time with her husband, son, and beagle. She is eager to utilize her technical background, problem solving skills, and motivation to contribute to new challenging projects.

MATT SHAPPELL, Logistics Operations Manager

As of July 9, Matt joins our team as the Logistics Operations Manager, and is primarily responsible for project coordination, staff and equipment scheduling, managing health and safety procedures, site visits, field work, staff training, and general oversight of operational logistics. Matt has worked in the environmental/aquatics field for over 15 years, and has extensive experience in geotechnical sampling as well as geophysical and hydrographic surveys. He is also a USCG 100 ton licensed vessel captain and a certified SCUBA diver.

Outside of work, Matt enjoys traveling, kayaking and hiking with his family.

SAMARA MCAULIFFE, Executive Advisor & Employee Relations Manager

With over ten years of human resources and management experience, Samara has worked as a business partner and advisor in various sectors, from finance to retail. Her hands-on experience includes researching and resolution of complex human resources related issues, recruitment process management, HRIS implementation, representation at unemployment hearings, creation of EEOC position statements, leading and administering open enrollment initiatives, as well as management coaching and training.

Outside of work, Samara is an active member of her community, volunteering for various causes dear to her heart. She enjoys spending time with her son and daughter and makes every effort to be outside as much as possible, preferably hiking or kayaking.

Marissa Ciocco, Staff Engineer

After spending the last year interning for our Geosciences Engineering Practice Area, we’re thrilled to have Marissa join our team full-time. She is a recent graduate of Rowan University holding a B.S. in Civil and Environmental Engineering with a Bantivoglio Honors Concentration. She was a member of the Orientation Staff for two years and is a member of the Student Alumni Association. She participated in the CREATE’s Fellowship program at Rowan University, and currently helps out at a local french bakery and tea room on the weekends. Her Junior Clinic class experience includes a green roof feasibility study and testing the effects of water quality on masonry mortar. In the future, Marissa hopes to work towards creating a greener and safer environment.

Marissa enjoys playing field hockey, cooking, knitting, car rides, and spending time with family and friends. She also enjoys watching home improvement shows, listening to country music, and mumbling phrases in Italian.

Ivy Babson, Staff Scientist

Ivy, who previously interned with us last summer, recently earned her B.S. in Environmental Science with a concentration in Ecological Design, and minor in Geospatial Technologies from the University of Vermont, and has now joined our team full time. During her studies, she was a member of UVM’s Humanitarian Mapping Club and has “virtually” responded to earthquake and hurricane relief efforts in Puerto Rico, Mexico, Texas, and Afghanistan via interactive spatial imagery programs. Ivy has also been the Art Editor of UVM’s alternative newspaper, drawing attention to environmental and social issues through articles and cartoons. Ivy worked closely through her school with the Vermont Chapter of The Nature Conservancy to create a restoration plan and GIS map of an altered wetland near Lake Champlain that would hopefully help regain the ecosystem services lost from agricultural development. In the future, she hopes to implement ecological design in impacted ecosystems and in urban areas to help rehabilitate and restore damaged resources.

Ivy enjoys drawing, listening to her favorite 90s alt rock bands, road tripping, and watching re-runs of It’s Always Sunny in Philadelphia.

eric Libis, Aquatics specialist

Eric Libis is passionate of the outdoors. As a resident of Alaska, Eric has extensive hands on experience with nature in all its forms. Previously, he’s held a variety of positions including small engine mechanic, project manager, and served in the U.S. Army. New to Princeton Hydro, he hopes to expand his conservation skills and knowledge while providing his experience to the field operations team.

Fond of all things outdoors, Eric can (or cannot) be found, hiking in the back-country, mountaineering, rock mineral and fossil collecting, camping (both primitive and modern), boating, fishing, trail-building, and educating the leaders of tomorrow of the importance in preserving nature for everyone to enjoy.

Chris Johnson, Field Technician

Chris currently attends The College of New Jersey as a chemistry major with a background in small molecule synthesis. As member of Princeton Hydro’s field operations staff, he primarily utilizes his pesticide operator’s license to treat aquatic invasive weeds and algae. Chris also assists in the installation of aeration systems and fountains. Outside of work, Chris enjoys the outdoors, hiking in the Sourland mountains, camping, and video gaming.

Zach Johnson, Field Technician

Zack is pursuing a degree in mechanical engineering from Rowan University. As a field technician and licensed pesticide operator, he is responsible for treating ponds and lakes with aquatic pesticides to control invasive species. Additionally, Zach assists with aeration system and fountain installations. In his free time, he enjoys movies, bike riding, video gaming and learning new life skills.

Becca Burrell, Communications Intern

Becca is a senior at the University of Pittsburgh, working to attain a degree in Media and Professional Communications on the Corporate and Community Relations track, along with a certificate in Public and Professional Writing. Through her previous experience and classwork, Rebecca has learned how to engage with others through social media, writing, and marketing. At Pitt, Rebecca is a member of two honor societies, plays intramural field hockey, and is on the events committee for the Imagination Project, a group that dresses as famous characters in kids’ movies/TV shows and visits local children’s hospitals and other rec centers. She is also a student worker in the English Department. At Princeton Hydro, she is excited to promote and further the company’s goals through the use of thoughtful communication strategies.

During her free time, you can find Becca hanging out with her family, friends, and dog. She also enjoys reading, taking walks, and binge-watching shows on Netflix.

Will Kelleher, Environmental Science Intern

Will returns to Princeton Hydro for second summer with our Aquatics team. Will is a rising senior at the University of Vermont, studying Environmental Science with a concentration in Water Resources. His current career interests are focused around wetlands restoration and water chemistry. He recently spent two weeks studying water management and sustainable technology in the Netherlands and in the past has helped with biological and chemical stream monitoring with Raritan Headwaters Association. At school, he is involved in many environmental clubs on campus including Wildlife Society, Beekeeping Club and Green House Residential Sustainability.

Outside his love for the environment, Will is also an avid hockey fan, fisherman, and aspiring traveler of the world.

Nicole King, Water Resources Intern

Nicole is an environmental engineering student with experienced in CAD drafting, technical writing, and environmental sampling processes. Prior to Princeton Hydro, she worked for an automated assembly systems manufacturer where she developed her drafting skills and organized an archive system for their project drawings.As a freshman at the University of New Hampshire, Nicole has participated in research investigating the effect of high precipitation events using coded and built pressure-depth sensors in a dammed reservoir. She is also a part of an entrepreneurship club where she expressed innovation and collaboration with other members.

In her free time, Nicole competitively swims and enjoys reading, drawing, and watching movies.

Nina Petracca, landscape design intern

Nina is a rising senior at Rutgers University studying in the Landscape Architecture Program. In her studies Nina has focused on park design, environmental planning, stream bank restoration and planting design. Her most recent project involved designing a park in Germany to compliment an engineered wetland. When she enters the Rutgers Landscape Architecture MLA Program she plans to focus her education on wetland design and its beneficial relation to the community. Over the course of her internship with us, Nina hopes to gain a better understanding of wetland design and eco-restoration and develop stronger graphic skills.

In her free time Nina enjoys hiking, dancing, cooking, spending time with loved ones and being a bird mom.

Lucas Pick, Environmental Science Intern

Lucas is entering his final year at the College of New Jersey. He is majoring in Biology with a focus in Ecology and Evolution and is minoring in Statistics. He performs research through TCNJ to investigate the interactive effects of deer and invasive species on suburban forest plant communities. He is also working on a capstone study to develop a structural equation model that encompasses the driving factors for oak regeneration. Lucas has been exposed to a wide variety of natural resource management projects, including forest stand improvements, wetland enhancements, stream restorations, and dam removals. He is seeking a career in ecology, agriculture, and natural resource management, and has joined Princeton Hydro in hopes of developing his knowledge of aquatic ecology and environmental science.

In his free time, Lucas enjoys long distance running, playing baseball, and practicing guitar.

Learn more about our team.

**Blog Content Updated on July 11, 2019**