Volunteer Spotlight: Monitoring Baby Bird Boxes & Counting Shorebirds

We’re excited to put the spotlight on Princeton Hydro Environmental Scientist Emily Bjorhus and her admirable volunteer work.

As an Environmental Scientist, Emily Bjorhus works on a wide range of projects from flood risk management to wetland mitigation to stream restoration. She specializes in wetland and stream ecology and environmental permitting and compliance. Outside of the office, Emily is an active volunteer with Natural Lands and the Delaware Shorebird Project, working to protect natural resources, promote biodiversity, and protect important species. Emily also volunteers at Franklin Delano Roosevelt High School in Brooklyn, NY teaching Environmental Science students about wetlands. We’ve put together a snapshot of Emily’s volunteer activities:

Natural Lands – Force of Nature Volunteer

Natural Lands is a nonprofit organization that saves open space, cares for nature, and connects people to the outdoors in eastern Pennsylvania and southern New Jersey. Founded in the early 1950s, today nearly five million people live within five miles of lands under Natural Lands’ permanent protection.

As a Force of Nature volunteer with Natural Lands, Emily has been monitoring ~20 nest boxes located in meadow and forest edge habitat at Gwynedd Preserve since 2018. From April through mid-August, Emily and another volunteer visit the sites every 5-7 days to monitor the nest boxes for the types of species using the boxes, nest condition, nest materials, number of eggs laid, number of eggs that hatch, and number of chicks that fledge. Chickadees, wrens, blue birds, and tree swallows are the primary species that nest in the boxes Emily monitors.

When asked what she loves most about this volunteer work, Emily said, “I love watching how the birds build their nest week after week, seeing the eggs multiply and tracking the chicks’ growth. I even enjoy dodging dive-bombing tree swallows.”

Delaware Shorebird Project – Data Collection Volunteer

Delaware Shorebird Project is led by DNREC’s Division of Fish & Wildlife in partnership with the U.S. Fish and Wildlife Service, Delaware Museum of Natural History, British Trust for Ornithology and Wash Wader Ringing Group, with the help of experienced and dedicated volunteers like Emily.

The project monitors the health and status of migratory shorebird populations to collect data that can be applied to the conservation of these birds. The research has resulted in better understanding of the ecology of shorebirds migrating through Delaware Bay, management of the horseshoe crab harvest to sustain the shorebirds’ population, and protection of key shorebird habitat.

Emily participated in a 3-day shorebird monitoring initiative, which included counting the number of shorebirds on the beach, re-sighting birds previously marked with leg flags, participating in bird catches, and weighing and measuring birds from the catches. The data collected helps monitor trends in shorebird abundance, migratory routes, condition and other important biological data.

“It’s such a pleasure working with the amazing people that come from all over the world to run and participate in this ambitious study,” said Emily. “The data collected from this program will hopefully aid researchers and policy makers to develop strategies to better protect shorebird habitat in the future.”

Franklin Delano Roosevelt High School Environmental Studies – Guest Speaker

Ms. Hannah Goldstein and her Environmental Science students at Franklin Delano Roosevelt High School in Brooklyn, NY welcome Emily as a volunteer guest speaker to teach all about wetlands. The instruction also includes a hands-on session where students collect soil samples to determine if hydric soils are present and identify surrounding trees using a dichotomous key.

“Science is such an important subject matter for kids to be learning for a variety of reasons. Environmental science education in particular encourages thought patterns, which get kids engaged in real-world environmental protection activities,” said Emily. “I really enjoy working with Ms. Goldstein and her students. I hope my presentation inspires the students to learn more about wetlands and become ambassadors of wetland conservation.”

 

Emily earned her M.S. in Sustainable Engineering at Villanova University and holds a B.S. in Environmental Science from University of Colorado at Boulder. As an Environmental Scientist for Princeton Hydro, she coordinates, leads and assists with state environmental permitting programs and NEPA compliance and documentation, including preparation of Federal and state permit applications, Endangered Species Act 7 consultations, and Federal Energy Regulatory Commission (FERC) environmental review processes. In addition, she conducts a variety of environmental field investigations such as wetland and waterbody delineations.

We’re so proud to have Emily on our team and truly value the work she does inside and outside the office.

Employee Spotlight: Meet Our New Team Members

We’re excited to announce the hiring of four new team members! The addition of this group of talented individuals strengthens our commitment to delivering exceptional service.

Laura Craig, PhD, Director of Natural Resources

Dr. Laura “LC” Craig is an aquatic ecologist and restoration practitioner with more than ten years of experience working in river conservation both as the chief scientist at a national environmental nonprofit and as a restoration practitioner. She is a big picture thinker with extensive experience in science communication, strategic planning, metrics and evaluation, project and budget management, policy, fundraising, and public engagement. Laura’s specific areas of scientific expertise are aquatic ecology, river restoration theory and practice (especially dam removal), nutrient dynamics, and climate adaptation. Laura also has a keen interest in improving how we manage existing and emerging threats to rivers. Laura earned a B.S. in Biology from Susquehanna University and a PhD in Aquatic Ecology from University of Maryland-College Park.

Laura lives in Palmyra, New Jersey where she serves on Borough Council and the Land Use Board. In her free time, Laura goes to punk rock shows with her husband and relaxes on the beach in Asbury Park.

Lori Cooper, Accounting Assistant

Lori has a diverse professional background which includes acting as an animal health technician, Director of Children’s Programming for a community organization, human resource generalist, executive assistant and as an office manager. Her well-rounded experience has effectively utilized her creativity, organizational skills, attention to detail and strength at building relationships. Lori is thrilled to play a supporting role for a company that is making a positive impact on our environment.

Outside of work, Lori enjoys spending time with her family, climbing, gardening and volunteering with various charitable organizations that pull at her heartstrings.

Jerry Vogel, Aquatic Specialist

Jerry has experience in the stormwater, wastewater, and subsurface mapping. Prior to coming to Princeton Hydro, he worked as an Intern with the Economic Geology Division at the Pennsylvania Department of Energy using geophysical logs from abandoned oil and gas wells to map subsurface stratigraphy in the Western Regions of Pennsylvania. Jerry graduated in 2018 with a Bachelors in Earth and Environmental Science from Lehigh University. As an undergraduate, in addition to extensive geology and ecology related coursework, including extensive work involving the remote sensing of aquatic and terrestrial ecosystems, he completed a six-week geological field camp based in the Northern Rockies, Bighorn Basin, Tetons, Yellowstone, Montana and Idaho gaining a deep understanding of the natural world from basin to mountaintop.

Jerry has a passion for fishing, hiking and being outdoors with his wife and dog. He prides himself on being an environmental steward working to conserve, preserve, and restore nature so it can be enjoyed by future generations.

Tim Cutler, Aquatic Specialist

Tim is a member of Princeton Hydro’s Field Operations Practice Area. He has ten years of experience working on the water. He is a U.S. Coast Guard veteran and served active duty from 2000-2005 as a Machinery Technician. For several years, Tim worked in emergency and marine spill response. He also has experience working with water quality analyzers as a Service Technician in the Power Generation field.

Outside of work, Tim enjoys being outdoors, seeing live music, going to the movies, and spending time with his wife and cats. He is also a drummer and illustrator in his spare time.

 

Learn more about our team.

 

 

 

Understanding and Addressing Invasive Species

Photo from: New York State Department of Environmental Conservation, water chestnut bed at Beacon

Spring is officially here! Tulips will soon be emerging from the ground, buds blossoming on trees and, unfortunately, invasive plant species will begin their annual growing cycle. No type of habitat or region of the globe is immune to the threat of invasive species (“invasives”). Invasives create major impacts on ecosystems throughout the world, and freshwater ecosystems and estuaries are especially vulnerable because the establishment of such species in these habitats is difficult to contain and reverse.

This blog provides an introduction to invasive aquatic species, including information that will help you prevent the spread of invasives in the waterways of your community.

Defining Invasive Species

Invasive species can be defined as non-native occurring in an ecosystem that is outside its actual natural or native distributional range. Although the colonization of an ecosystem by non-native species can occur naturally, it is more often a function of human intervention, both deliberate and accidental. For aquatic ecosystems some species have become established as a result of the aquarium trade, fish culture practices and/or transport of plants and animals in the bilge and ballast water of trans-oceanic shipping vessels.

One of the primary reasons invasives are able to thrive, spread rapidly, and outcompete native species is that the environmental checks and predators that control these species in their natural settings are lacking in the ecosystems and habitat in which they become introduced. The subsequent damages they cause occur on many ecological levels including competition for food or habitat (feeding, refuge and/or spawning), direct predation and consumption of native species, introduction of disease or parasites, and other forms of disruption that lead to the replacement of the native species with the invasive species. As a result, invasives very often cause serious harm to the environment, the economy, and even human health. A prominent example is the Emerald Ash Borer, a non-native, invasive beetle that is responsible for the widespread death of ash trees.

As noted above, there are a large number of aquatic invasive species. Some of the more commonly occurring non-native aquatic plant species that impact East Coast lakes, ponds and reservoirs include:

Understanding How Invasives Spread

Either intentionally or unintentionally, people have helped spread invasives around the globe. This is not a recent phenomenon but rather something that has been occurring for centuries. “Intentional introductions,” the deliberate transfer of nuisance species into a new environment, can involve a person pouring their home aquarium into a lake or deliberate actions intended to improve the conditions for various human activities, for example, in agriculture, or to achieve aesthetics not naturally available.

Photo by: Tom Britt/CC Flickr, zebra Mussels adhered to a boat propeller“Unintentional introductions” involve the accidental transfer of invasives, which can happen in many ways, including aquatic species attached to the hull of boats or contained in bilge and ballast water. A high-profile example is the introduction of zebra mussels to North America. Native to Central Asia and parts of Europe, zebra mussels accidentally arrived in the Great Lakes and Hudson River via cargo ships traveling between the regions. The occurrence, density, and distribution of Zebra mussels occurred at an alarming rate, with the species spreading to 20 states in the United States and to Ontario and Quebec in Canada. Due to their reproductive fecundity and filter-feeding ability, they are considered the most devastating aquatic invasive species to invade North American fresh waters. They alter and diminish the plankton communities of the lakes that they colonize leading to a number of cascading trophic impacts that have especially negative consequences on fisheries. Zebra mussel infestations have also been linked to increased cyanobacteria (bluegreen algae) blooms and the occurrence of harmful algae blooms (HABs) that impact drinking water quality, recreational use, and the health of humans, pets, and livestock.

Additionally, higher than average temperatures and changes in rain and snow patterns caused by climate change further enable some invasive plant species to move into new areas. This is exemplified by the increased northly spread of hydrilla (Hydrilla verticillate), a tropical invasive plant species that has migrated since its introduction in Florida in the 1950s to lakes, rivers, and reservoirs throughout the U.S.

Regardless of how any of these invasive species first became established, the thousands of terrestrial and aquatic invasive species introduced into the U.S. have caused major ecological, recreational and economic impacts.

Measuring the Impacts of Invasives

After habitat loss, invasive, non-native species are the second largest threat to biodiversity. According to The Nature Conservancy, “Invasive species have contributed directly to the decline of 42% of the threatened and endangered species in the United States. The annual cost to the nation’s economy is estimated at $120 billion a year, with over 100 million acres (an area roughly the size of California) suffering from invasive plant infestations. Invasive species are a global problem — with the annual cost of impacts and control efforts equaling 5% of the world’s economy.”

Of the $120 billion, about $100 million per year is spent on aquatic invasive plant control to address such deleterious issues as:

  • Human health (West Nile Virus, Zika Virus)
  • Water quality impacts (Canada geese)
  • Potable water supplies (Zebra mussel)
  • Commercial fisheries (Snake head, lamprey, Eurasian ruffe, round goby)
  • Recreational activities (Eurasian watermilfoil, water chestnut, hydrilla)
  • Biodiversity (Purple loosestrife, common reed, Japanese knotweed)

Invasive species can change the food web in an ecosystem by destroying or replacing native food sources. As the National Wildlife Federation explains, “The invasive species may provide little to no food value for native wildlife. Invasive species can also alter the abundance or diversity of species that are important habitat for native wildlife. Additionally, some invasive species are capable of changing the conditions in an ecosystem, such as changing soil chemistry…”

Addressing Invasives

Our native biodiversity is an irreplaceable and valuable treasure. Through a combination of prevention, early detection, eradication, restoration, research and outreach, we can help protect our native heritage from damage by invasive species.

What Can We Do?

  • Reduce the spread
  • Routinely monitor
  • Document and report
  • Spread the word

Reducing the Spread:
The best way to fight invasive species is to prevent them from occurring in the first place. There are a variety of simple things each of us can do to help stop the introduction and spread of invasives.

  • Plant native plants on your property and remove any invasive plants. Before you plant anything, verify with your local nursery and check out this online resource for help in identifying invasive plants.
  • Thoroughly wash your gear and watercraft before and after your trip. Invasives come in many forms – plants, fungi and animals – and even those of microscopic size can cause major damage.
  • Don’t release aquarium fish and plants, live bait or other exotic animals into the wild. If you plan to own an exotic pet, do your research to make sure you can commit to looking after it. Look into alternatives to live bait.

Monitoring:
The Lake Hopatcong Foundation Water Chestnut prevention brochureInvasive plant monitoring is one of the most valuable site­-level activities people can support. Contact your local watershed organizations to inquire about watershed monitoring volunteer opportunities. For example, the Lake Hopatcong “Water Scouts” program was established to seek out and remove any instances of the invasive water chestnut species.

If you are a lake or watershed manager, the best way to begin an invasive plant monitoring project is with an expert invasive plant survey to determine which invasives are most likely to be problematic in your watershed and identify the watershed’s most vulnerable areas. Contact us to learn more.

 

Documenting and Reporting:
It’s important to learn to identify invasive species in your area and report any sightings to your county extension agent or local land manager. For example, in New Jersey there is the Invasive Species Strike Team that tracks the spread of terrestrial and aquatic invasives and works with local communities in the management of these species. Additionally, consider developing a stewardship plan for your community to help preserve its natural resources. Princeton Hydro’s team of natural resource scientists can help you get the ball rolling by preparing stewardship plans focused on controlling invasive species and protecting the long-term health of open spaces, forests habitats, wetlands, and water-quality in your community.

Spreading the word:
Many people still don’t understand the serious implications of invasive species. Education is a crucial step in stopping the spread of invasives, which is why it’s so important to talk with your neighbors, friends and family about the hazards and ecological/economic impacts of invasive species.

Also consider talking with your community lake or watershed manager about hosting an educational workshop where experts can share their knowledge about invasives specific to your area and how best to address them. Princeton Hydro’s Director of Aquatic Programs Dr. Fred Lubnow recently gave a presentation to the Lake Hopatcong Foundation titled, “Invasive Species in Watershed Management.” View it here.

 

We encourage you to share this article and spread your invasive species knowledge so that together we can help stop the introduction and spread of invasive species.

Ecological Uplift in an Urban Setting

The City of Elizabeth, the fourth most populous in New Jersey, is not exactly the first place that comes to mind when envisioning a wild landscape. This bustling urban area is well known for its Port Newark-Elizabeth Marine Terminal and the Philips 66 Bayway Refinery, and sits at the intersection of several major roadways like the NJ Turnpike and the Goethals Bridge. The landscape, which was once teeming with dense wetlands and associated habitats, is now heavily urbanized with a vast mix of residential, commercial, and industrial properties. The largely channelized Elizabeth River courses through the city for 4.2 miles before draining into the Arthur Kill waterway. However, in this 14-square mile city, native flora and fauna are taking root again thanks to ecological restoration and mitigation efforts.

Urban landscapes like Elizabeth can pose significant challenges for restoration efforts, but they also provide an array of opportunity for significant ecological uplift.

In 2004, Princeton Hydro was retained to restore an 18-acre site adjacent to the Elizabeth Seaport Business Park, which is located in an area that was once part of a large contiguous wetland system abutting Newark Bay. The site was comprised of a significantly disturbed mosaic of wetland and upland areas and a monoculture of Phragmites australis, also known as Common Reed, on historic fill. Historic fill consists of non-native material, historically placed to raise grades, and typically contains contaminated material not associated with the operations of the site on which it was placed.

The highly invasive Phragmites australis had overtaken most of the wetland areas, and the upland woodland areas only contained four tree species, mostly Eastern Cottonwood, with very low wildlife value. The 18-acre site had huge potential but was significantly degraded and was being vastly underutilized. Overall, the mitigation plan focused on the enhancement of existing wetland and transition areas to increase the area’s wildlife value through the establishment of a more desirable, diverse assemblage of native species subsequent to eradication of non-native-invasive species.

2005 (Before Plantings)
2019
In 2004, Prologis hired Princeton Hydro to restore an 18-acre area adjacent to the Elizabeth Seaport Business Park, which a significantly disturbed and degraded mosaic of wetland and upland areas. This project serves as an example of how degraded urban areas can be successfully rehabilitated and the land’s natural function restored and enhanced.

The freshwater wetland aspect of the mitigation plan, which included inundated emergent, emergent, and forested habitat, was designed to be a combination of wetland creation (2.40 acres) and enhancement (8.79 acres), emphasizing the establishment of more species rich wetlands in order to increase biodiversity and improve the site’s wildlife food value.

The upland forest aspect of the mitigation plan involved the enhancement of 5.40 acres and creation of 1.45 acres of upland forest to foster the development of a species rich and structurally complex upland forest. The upland areas targeted for enhancement/creation consisted of areas where woody vegetation was lacking or forested areas that were dominated by eastern cottonwood.

2008
2019
The 18-acre site in Elizabeth, NJ had huge potential but was significantly degraded and was being vastly underutilized. The mitigation plan emphasized the establishment of more species rich wetlands in order to increase biodiversity and improve the site’s wildlife habitat value.

The project team worked to remove Phragmites australis from the site utilizing a combination of herbicide and mechanical removal techniques. Once the Phragmites australis was cleared, the team installed 27,000 two-inch native herbaceous plant plugs in the wetland portions of the mitigation site, and 2,705 native trees/shrubs throughout the site.

In order to ensure the continued success of the mitigation project, monitoring is regularly conducted at the site. A monitoring report conducted at the end of 2019 revealed a plethora of well-established habitat areas, a diverse community of plant and tree species, and a thriving, highly-functional landscape.

2004 (Before Plantings)
september 2019
In 2004, before the restoration work began, the site consisted of degraded Phragmites australis dominated wetlands and an urban woodland area dominated by Eastern cottonwood. The planting component of the mitigation project commenced in 2015, and the installation of all woody plant material began Fall 2015 and was completed in Fall 2016. The 2019 Monitoring Report revealed the plantings are well-established and the area is thriving.

Presently, the Elizabeth Seaport Business Park Mitigation Site boasts a variety of productive wildlife habitats that are rare in a highly urbanized setting and provides valuable ecosystem services, including sediment retention and roosting, foraging, and nesting opportunities for both resident and migratory bird species with over 150 bird species identified within the mitigation site.

2008
2019
The Elizabeth Seaport Business Park site was comprised of a monoculture of Phragmites australis, also known as Common Reed. The mitigation plan focused on enhancing the existing wetland by eradicating non-native-invasive plant species, like Phragmites, and establishing more diverse population of productive, native species with high ecological value.

This project serves as an example of how degraded urban areas can be successfully rehabilitated and the land’s natural function restored and enhanced.  If you’d like to learn more about this project from our Natural Resources Senior Project Manager Michael Rehman, check out the video of his presentation at the 2020 Delaware Wetlands Conference below.

We’re at the Delaware Wetlands Conference and our Senior Project Manager, Michael Rehman, is presenting on a successful urban wetland restoration in Elizabeth, NJ.

Posted by Princeton Hydro on Thursday, January 30, 2020

 

If you’re interested in learning more about our wetland restoration and mitigation services, go here!

FREE DOWNLOADS: Mid-Atlantic Stream Restoration Conference Presentations

The Resource Institute hosted its 9th Annual Mid-Atlantic Stream Restoration Conference in Baltimore, Maryland, where water resource professionals, researchers, and practitioners come together for three days to share ideas and learn about stream restoration planning, assessment, design, construction, evaluation, and other topical stream issues. The conference, which was themed Building Resilient Streams in the Mid-Atlantic and Northeast regions, included presentations, discussions, exhibits, and pre-conference workshops. Princeton Hydro participated in three presentations on a variety of topics. Below, we provide a synopsis and free download of each presentation:

Innovative Design and Funding Approaches for Dam Removal Projects Where an Unfunded Mandate Exists

Lead Presenter: Kirk Mantay, PWS, GreenTrust Alliance, Inc.
Co-Authors: Geoffrey Goll, P.E.; Princeton Hydro President; John Roche, Maryland Department of Environment; and Brett Berkley, GreenVest.

The presentation provides a detailed look at the removal of the Martin Dam in Fallston, Maryland, and how project partners were able to drastically expand the footprint of this emergency dam removal to generate enough ecological restoration benefits to adequately fund the dam removal itself.

The Martin Dam was constructed in 1965 as part of USDA’s sustainable farms pond construction initiative, which promoted aquaculture and subsistence fish production on small farms across the region as an income source for agricultural producers. Dam-related impacts included the permanent loss of spring-fed sedge wetlands, ditching of forested floodplain wetlands, pollution from stream bank entrenchment, and thermal impacts to a wild brook trout population downstream.

Overtime, the dam structure began to degrade. With each state and local agency inspection that was conducted, the dam increased in hazard category. In 2016, the Maryland Department of the Environment (MDE) was forced to list the dam as a, “public safety hazard at risk of immanent failure.” The landowner, unable to fund the dam removal, contacted GreenTrust Alliance (GTA), a regional green infrastructure nonprofit organization, for help.

By emphasizing the ecological benefits of restored wetlands and streams above and below the dam as well as the critical public safety hazard faced by residents and motorists downstream, GTA, in partnership with Princeton Hydro and GreenVest, was able to secure restoration funding for the site. The design and permitting was lead by Princeton Hydro, and the dam was safely breached as part of restoration construction in January 2019.

Learn more and download the full presentation.

 

Columbia Lake Dam Removal; Using Drones for Quantitative Evaluation of River Restoration

Lead Presenter: Beth Styler-Barry of The Nature Conservancy
Co-Authors from Princeton Hydro: Geoffrey Goll, P.E., President; Casey Schrading, EIT, Staff Engineer; Kelly Klein, Senior Project Manager, Natural Resources; and Christiana Pollack, CFM, GISP, Senior Project Manager, Environmental Scientist.

In order to explore the use of drone or UAV technology to evaluate the effects of dam removals, the presentation showcases the Columbia Lake Dam removal, the largest dam removal in New Jersey to date.

The Columbia Lake Dam, built in 1909, was 18 feet high, 330 feet long dam, and stretched more than 1.5 miles on the Paulins Kill less than 0.25 miles upstream from its confluence with the Delaware River. As part of The Nature Conservancy’s (TNC) mission to improve the quality of the Paulins Kill, removing this “first blockage” was the cornerstone of the larger mission. Princeton Hydro served as the engineer-of-record, designing and permitting this project. Dam removal activities commenced in 2018 and were finalized in 2019. Its removal opens 10 miles of river for fish migration and improves recreation access, floodplain reconnection, habitat enhancement and higher water quality.

TNC will conduct five years of monitoring, a vitally important component of this project, to determine long-term ecological uplift, short-term positive and negative effects, and to develop data to provide information for future dam removals. And, as a result of the programmable and repeatable nature of drone flight paths, such monitoring will be able to be conducted for years and decades, producing invaluable data for research and future project design.

The presentation reviews the various parameters investigated, the results and significance of the data retrieved, and recommendations for the use of drone technology for future ecosystem restoration projects.

Learn more and download the full presentation.

Modeling 3D Rivers in AutoCAD to Enhance Design and Deliverables

Lead Presenter: Daniel Ketzer, PE, Princeton Hydro Senior Project Manager, River Restoration
Co-Authors from Princeton Hydro: Eric Daley, Water Resources Engineer; Cory Speroff, MLA, ASLA, CBLP, Landscape Designer; and Sumantha Prasad, PE, ENV SP, Water Resource Engineer

This presentation provides an overview on how to create 3D river models based on geomorphic input to enhance the overall accuracy and quality of a river restoration project.

In river restoration, the proposed geometry of the river channel is the key part of the design. It impacts earthwork, utility conflicts, plan set layout, and many other aspects of the project. In larger projects with reaches measuring thousands of feet and greater, manual grading is extremely time consuming and tedious; and determining the entire implication of the proposed design is difficult to achieve when simply analyzing proposed cross-sections and profiles. To increase efficiency and maintain uniformity throughout the subject reach developing a 3D-surface model of the proposed restoration reduces design time and increases quality. AutoCAD Civil 3D can be used to convert the proposed profiles and cross-sections from a geomorphic design into a 3D surface of the river corridor.

The presentation goes through the key steps that need to be taken and strategic questions that need to be asked when modeling 3D rivers in AutoCAD along with important tips and reminders.

Learn more and download the full presentation.

Stay tuned for our Spring Events Spotlight to learn how you can participate in upcoming environmental events! Click here to read more about Princeton Hydro’s river restoration services.

Feasibility Study Identifies Key Opportunities for Hudson River Habitat Restoration

Hudson River Bear Mountain Bridge (Photo from Wikipedia)

The Hudson River originates at the Lake Tear of the Clouds in the Adirondack Mountains at an elevation of 4,322 feet above sea level. The river then flows southward 315 miles to New York City and empties into the New York Harbor leading to the Atlantic Ocean. The Hudson River Valley lies almost entirely within the state of New York, except for its last 22 miles, where it serves as the boundary between New York and New Jersey.

Hudson River Basin (Image by USACE)Approximately 153 miles of the Hudson River, between the Troy Dam to the Atlantic Ocean, is an estuary. An estuary is defined by the USEPA as “a partially enclosed, coastal water body where freshwater from rivers and streams mixes with salt water from the ocean. Estuaries, and their surrounding lands, are places of transition from land to sea. Although influenced by the tides, they are protected from the full force of ocean waves, winds and storms by landforms such as barrier islands or peninsulas.”

The Hudson River’s estuary encompasses regionally significant habitat for anadromous fish and globally rare tidal freshwater wetland communities and plants, and also supports significant wildlife concentrations. As a whole, the Hudson River provides a unique ecosystem with highly diverse habitats for approximately 85% of New York State’s fish and wildlife species, including over 200 fish species that rely on the Hudson River for spawning, nursery, and forage habitat.

The Hudson is an integral part of New York’s identity and plays a vital role in the lives of the people throughout the area. Long valued as a transportation corridor for the region’s agricultural and industrial goods, and heavily used by the recreation and tourism industries, the Hudson plays a major role in the local economy. It also provides drinking water for more than 100,000 people.

At the end of the American Revolution, the population in the Hudson River Valley began to grow. The introduction of railroad travel in 1851 further accelerated development in the area. Industrial buildings were erected along the river, such as brick and cement manufacturing, which was followed by residential building. Along with the aforementioned development, came the construction of approximately 1,600 dams and thousands of culverts throughout the Hudson River.

According to the U.S. Army Corps of Engineers (USACE), these human activities have significantly degraded the integrity of the Hudson River ecosystem and cumulatively changed the morphology and hydrology of the river. Over time, these changes have resulted in large-scale losses of critical shallow water and intertidal wetland habitats, and fragmented and disconnected habitats for migratory and other species. Most of this loss and impact has occurred in the upper third portion of the estuary.

As part of the effort to restore the vital river ecosystem, the USACE New York District launched a Hudson River Habitat Restoration Feasibility Study, which helps to establish and evaluate baseline conditions, develop restoration goals and objectives, and identify key restoration opportunities. Princeton Hydro participated in data collection and analysis, conceptual restoration designs, and preparation of the USACE Environmental Assessment for the Hudson River Habitat Restoration Ecosystem Restoration Draft Integrated Feasibility Study and Environmental Assessment.

Basic map depicting project sites (Created by Princeton Hydro)The study area includes the Hudson River Valley from the Governor Mario M. Cuomo Bridge downstream to the Troy Lock and Dam upstream. The primary restoration objectives include restoring a mosaic of interconnected, large river habitats and restoring lost connectivity between the Hudson River and adjacent ecosystems.

A total of six sites were evaluated using topographic surveys, installation and monitoring of tide gauges, evaluation of dam and fish barrier infrastructure, and field data collection and analysis to support Evaluation of Planned Wetlands (EPW) and Habitat Suitability Indices (HSI) functional assessment models. Literature reviews were also completed for geotechnical, hazardous toxicity radioactive waste, and aquatic organism passage measures.

Multiple alternatives for each of the six sites were created in addition to the preparation of conceptual designs, quantity take-offs, and cost estimates for construction, monitoring and adaptive management, and long-term operation and maintenance activities.

Princeton Hydro also prepared an environmental assessment in accordance with NEPA standards, addressing all six sites along the Hudson River and its tributaries. This assessment served to characterize existing conditions, environmental impacts of the preferred Proposed Action and No Action Alternatives, and regional cumulative environmental impacts. Our final report was highlighted by USACE at the 2019 Planning Community of Practice (PCoP) national workshop at the Kansas City District as an example of a successfully implemented Ecosystem Restoration Planning Center of Expertise (ECO-PCX) project.

USACE’s specific interest in Hudson River restoration stems from the aforementioned dramatic losses of regional ecosystems, the national significance of those ecosystems, and the apparent and significant opportunity for measurable improvement to the degraded ecological resources in the river basin.

The feasibility study is among the first of several critical steps in restoring the Hudson River’s ecosystem function and dynamic processes, and reestablishing the attributes of a natural, functioning, and self-regulated river system. Stay tuned for more updates on the Hudson River restoration efforts.

Flipping the Script on American Environmental Thought: FREE Presentation Download

 

The Watershed Institute held its 3rd Annual New Jersey Watershed Conference, an educational event that aims to advance knowledge and communications on issues related to water quality and quantity across the state. The event included a variety of presentations from local experts on watershed management, stormwater, and problems and solutions related to the health of New Jersey’s watersheds.

During the conference, Princeton Hydro’s Marketing Coordinator Kelsey Mattison, a St. Lawrence University graduate with a degree in English and environmental studies, lead a workshop that explored binaries in environmental thought and how to break through those limiting thought processes in order to advance a more productive and shared understanding of our natural world.

The presentation, titled “Flipping the Script on American Environmental Thought,” discussed how black-and-white thought processes (a.k.a. binaries) cause us to view issues as one or the other, leaving little to no room for the possibility of blending the two.

Historically, American thought has viewed environmental issues through a binary lens: either we favor human society, or we favor the environment, and this juxtaposition has rarely allowed for integration between the two perspectives.

Take, for example, the two concepts of preservation and conservation toted by John Muir and Gifford Pinchot, respectively. Muir’s concept of preservation argued that humans should set land aside to leave untouched to preserve its natural beauty, while Pinchot’s concept of conservation advocated for a responsible use of the land’s resources. Both are forms of environmental advocacy, but neither leave much room to combine the two ideas, ultimately creating a black and white binary surrounding human responsibility to the planet. This makes it difficult to then make any compromise on issues related to managing or utilizing our natural resources.

The workshop also explored answers to the important question of: “How do we flip the script to be more inclusive?” Participants discussed ideas around utilizing Values-Based Communication in order to connect with people from different groups/with different values. A few of the communication strategies Kelsey presented, include:

  • Finding Common Ground:

    When groups are telling such different narratives, it can be hard to see that their goals might actually be completely in line. By first identifying what each group’s priorities are, we can better understand their needs in order to help fulfill them. This allows people with seemingly conflicting beliefs to work towards a common goal.

  • Seeing More than Two Sides:

    Generally, people default to thinking there are only two sides to an issue, but no conflict is ever truly just one thing or the other. Even if there are overtly two options, the issue is always more complex. When resolving conflict, it’s almost always possible to find at least one thing the two sides have in common.

Overall, Kelsey’s workshop emphasized the importance of open-mindedness and inclusion in our approach to environmental action in order to bring people together and foster real change. If you’re interested in learning more, click here for a free download of Kelsey’s full presentation.

The New Jersey Watershed Conference, of which Princeton Hydro was a sponsor and exhibitor, also included presentations on topics ranging from urban flooding to microplastics in our waterways to green infrastructure. Dr. Fred Lubnow, Princeton Hydro’s Director of Aquatic Programs, presented on the “Causes and Impacts of Harmful Algal Blooms.” To view the complete agenda, go here.

Princeton Hydro is a proud supporter of The Watershed Institute, a nonprofit organization comprised of policy advocates, scientists, land and water stewards, naturalists, and educators. Focused on the Central New Jersey area, the Watershed Institute speaks out for water and environment, protects and restores sensitive habitats, tests waterways for pollution, and inspires others to care for the natural world. For more information, or to become a member, go here.

Laura Wildman Awarded for “Bringing the Presumpscot River Back to Life”

Photo provided by the Friends of the Presumpscot River

The Friends of the Presumpscot River (The Friends) Board of Trustees awarded Laura Wildman, P.E., Princeton Hydro’s New England Regional Office Director and Water Resources and Fisheries Engineer, with its “Chief Polin Award.” The award recognizes Laura for her accomplishments and efforts in bringing life back to the Presumpscot River and rivers across the nation. The award was presented at The Friends’ Three Sisters Harvest Dinner & Annual Celebration.

The Chief Polin Award recognizes those who are making significant efforts to restore fish passage, improve water quality and bring back the natural character of the Presumpscot river.During her acceptance speech, Laura thanked The Friends for its continued dedication to restoring fish passage and revitalizing the river. “I am so proud to be part of the ‘river warriors’ team,” Laura said. “Our collective efforts to protect and restore the river have resulted in invaluable benefits to fish, aquatic organisms, wildlife, and the surrounding communities.”

The award is named after local Abanaki tribe leader Chief Polin, who led the first documented dam protest in New England during the mid-1700s, advocating for fish passage, which had been compromised by the first dams built along the river. The award recognizes those who are making significant efforts to restore fish passage, improve water quality, and bring back the natural character of the Presumpscot River. Sean Mahoney from the Conservation Law Foundation also received the Chief Polin Award during the Annual Celebration.

Map provided by The Friends of the Presumpscot RiverLocated in Cumberland County, Maine, the Presumpscot is a 25.8-mile-long river and the largest freshwater input into Casco Bay. The river has long been recognized for its vast quantity of fish. According to The Friends, when Europeans first arrived, they reported that “the entire surface of the river, for a foot deep, was all fish.”

In the 1730s, however, the construction of dams halted the passage of fish up the river. As more dams sprung up in the following centuries, the ecological vitality of the river steadily declined.

For more than 250 years, people have advocated for the unobstructed passage of fish up the Presumpscot River. Over the last 50 years, the river has undergone profound transformation due to the enactment of the Clean Water Act, the removal of a few dams, and the installation of fish passages on existing dams. Fish passage at Cumberland Mills Dam, which was completed in 2013, restored critical habitat to sea run fish such as shad, American eel, and river herring, and allowed them to move upstream again.

Saccarappa Falls dam removal in actionIn July, work began to restore a large reach of the river through Westbrook, Maine. The project involves the removal of two dam spillways from the upper Saccarappa Falls and the construction of a fishway around the lower falls. The project, which was three years in the making, was finally approved to move forward once the City of Westbrook, Sappi Fine Paper, the U.S. Fish and Wildlife Service, the Maine Department of Marine Resources, and the nonprofits, Friends of the Presumpscot River and Conservation Law Foundation, were able to reach a ground breaking settlement. The Saccarappa Falls project is a major step in restoring the river and was a focal point of the Three Sisters Harvest Dinner, celebrating decades of effort on the parts of the Friends of the Presumpscot along with their numerous project partners, including Princeton Hydro.

About the Friends of the Presumpscot River: A nonprofit organization founded in 1992, supported primarily by membership dues and small donations. Its mission is to protect and improve the water quality, indigenous fisheries, recreational opportunities and natural character of the Presumpscot River.
Learn more: presumpscotriver.org

About Princeton Hydro: Princeton Hydro has designed, permitted, and overseen the removal of dozens of small and large dams along the East Coast. To learn more about our fish passage and dam removal engineering services, visit: bit.ly/DamBarrier.

DIY: Protecting Water Quality in Your Community

There are lots of things we can do to preserve our precious water resources. Reducing stormwater pollution in our neighborhoods is something everyone can take part in. Storm drain cleaning is a great place to start!

DIY Storm Drain Cleaning

Urbanization has fundamentally altered the way that water moves through the landscape. Stormwater that doesn’t soak into the ground runs along streets and parking lots and picks up pollutants. Much of the pollution in our nation’s waterways comes from everyday materials like fertilizers, pesticides, motor oil, and household chemicals. Rainwater washes these substances from streets, yards and driveways into storm drains.

It’s a common misconception that storm drains lead to wastewater treatment plants. In actuality, storm drains rarely lead to treatment plants and instead stormwater systems carry untreated water directly to the nearest waterway. This polluted runoff can have negative impacts on water quality, overstimulate algal growth (both toxic and non-toxic), harm aquatic species and wildlife, and cause trash and debris to enter our lakes, streams, rivers and oceans.

https://www.middlesexcentre.on.ca/Public/Stormwater

We can all do our part to improve and preserve water resources in our community and beyond!

Keeping neighborhood storm drains cleaned is one simple step. Removing debris that collects in nearby stormwater catch basins, storm drains and along curbs promotes cleaner runoff, reduces the potential for flooding, and decreases the amount of pollution and trash entering our waterways.

Follow these simple steps for DIY storm drain cleaning:

  1. Photo: Santiago Mejia, The ChronicleRake/sweep and discard debris that has collected on top of the storm grate and in curbside rain gutters. Please note: If you notice a major blockage or issue with a storm drain, contact your local municipality immediately.
  2. Use a scrub brush or toilet bowl scrubber to remove debris that may be stuck to the storm grate.
  3. Adopt a storm drain(s) and maintain a regular cleaning schedule: Make a note on your calendar each quarter to clean and clear debris from storm drains nearby your home or workplace. And, make a habit of checking your storm drains after rainstorms when clogging is most common.
  4. Host a community clean-up day that includes trash pick-up, storm drain cleaning, and disseminating information on the impacts of stormwater runoff and what we can do to help.
  5. Consider contacting your local watershed association or municipality about getting drain markers installed on storm drains throughout the community. The markers act as a continued public reminder that anything dumped into a storm drain eventually ends up in our precious waterways downstream.

Remember: Small actions lead to big achievements in protecting water quality. 

Dr. Fred Lubnow of Princeton Hydro Featured in Magazine Article on Chautauqua Lake

The U.S. is home to thousands of lakes both natural and manmade. Lakes are incredibly important features in the landscape that provide numerous beneficial services, including domestic water supply, hydro-electric power, agricultural water supply, recreation, and tourism. They also provide essential habitat for fish, wildlife and aquatic organisms.

Lakes are complex and dynamic systems, each situated in a unique landscape context. Maintaining the ecological health of a lake is no easy feat. A lot goes on behind the scenes to maintain water quality and a balanced lake ecosystem. Successful, long-term lake management requires a proactive approach that addresses the causes of its water quality problems rather than simply reacting to weed and algae growth and other symptoms of eutrophication.

Chautauqua Magazine recently published an article about the science behind the management of Chautauqua Lake, which features our Director of Aquatic Programs Dr. Fred Lubnow. We’ve included an excerpt below. Click here to view the full article and photos:

Dr. Fred Lubnow is a scientist and director of aquatic programs at Princeton Hydro, a consulting organization based in Exton, Pennsylvania, that is often called on to support lake and watershed regions that want to develop a long-term plan for lake conservation.

He says that while his firm focuses on the development of data and intelligence to inform decision making in regard to freshwater ecosystems, his work is really about coalition building.

“As a scientist and a consultant, you learn over time that you are building a coalition stakeholders and determining what we can agree on to help everyone in the community,” Lubnow said.

Ten years ago, Princeton Hydro was hired to do some stream and inlet monitoring for various stakeholders at Chautauqua Lake. More recently, they’ve been contracted to conduct third-party monitoring of the impacts of the Spring 2019 herbicide applications in the south basin of Chautauqua Lake…

Continue reading!

 

Princeton Hydro is the industry leader in lake restoration and watershed management. We have conducted diagnostic studies and have developed management and restoration plans for over 300 lakes and watersheds throughout the country. This has included work for public and private recreational lakes, major water supply reservoir, and watershed management initiatives conducted as part of USEPA and/or state funded programs. For more information about our lake management services, go here: http://bit.ly/pondlake.