A Day in the Life of a Construction Oversight Engineer

Have you ever wondered what it actually means to conduct construction oversight on a project? Our engineers regularly do so to ensure design plans are being implemented correctly. But, construction oversight requires a lot more than just the ability to oversee. Our engineers have to understand the ins and outs of the plans, be adaptable, fast-thinking, and incredibly capable of communicating with and coordinating various parties.

Let’s walk through a day in the life of one of our construction oversight engineers, Casey Schrading, EIT, and outline the key components of his job:

SAFETY. When it comes to construction sites, safety always comes first. It is important to have the proper health and safety training before entering an active construction zone. On an active construction site, there could be many different hazards that workers encounter. Before heading to the site, Casey makes sure he has all his necessary safety equipment and protection gear. Personal Protection Equipment (PPE) usually includes a neon safety vest (visibility), hard hat (head protection), long pants (protective clothing), safety glasses (eye protection), and steel-toed boots (foot protection). In some cases, on construction sites with more risk factors, higher levels of PPE may be required including hearing protection, gloves, respiratory masks, fall protection equipment, and disposable Tyvek coveralls.

COORDINATION.  For most construction projects, the day starts early. Upon arrival, Casey checks the site out to see if anything has changed from the day before and takes pictures of the site. He then checks in with the contractor to discuss the plan for the day and any outstanding items from the day prior.

Most of the day consists of a back and forth process between watching the construction workers implement the design and then monitoring and checking the design plans. In order for the contractor to properly implement the design, the oversight engineer must direct the workers during the installation process; for many designs, there are critical angles, locations, heights, and widths that features must be installed at. It is imperative for the oversight engineer to direct and work hand-in-hand with the contractor so those features are installed correctly for effective design implementation.

ON-SITE MONITORING.  For certain projects, the day-to-day construction oversight tasks may get a little more involved. For instance, when conducting construction oversight for our Columbia Dam Removal project, Casey was tasked with taking turbidity samples every three hours at two locations along the Paulins Kill — one upstream of the site to collect baseline data and one downstream of the site to quantify the site’s effect on turbidity. If the turbidity readings downstream of the site came out too high, Casey would then have to determine how those high levels were affecting the turbidity in the Delaware River, which the Paulins Kill discharges into less than a quarter mile downstream of the site. If flooding in the Delaware River wasn’t enough to pose safety concerns, Casey would then take readings at two additional locations upstream and downstream of the Delaware River-Paulins Kill confluence. Again, the upstream reading served as a baseline reading for turbidity while the downstream reading showed the effects of the Paulins Kill on the Delaware River.

These turbidity samples were necessary because this project involved passive sediment transport, meaning the sediment that had built up behind the dam for over a century was going to slowly work its way downstream as the dam was notched out piece by piece, as opposed to it being dredged out before the barrier removal. It’s important to monitor turbidity in a case like this to make sure levels remain stable. The need for monitoring at construction sites further emphasizes the need for construction oversight engineers to be multifaceted.

ADAPTATION.  In all construction projects, the goal is to have everything installed or constructed according to plan, but, with so many environmental factors at play, that rarely happens. Because of the ever-changing nature of most of our projects, it is essential that our construction oversight engineers have the keen ability to adapt and to do so quickly. Casey has experienced a range of changes in plan while conducting construction oversight. He says the skills he relies on most is communication. When something changes, it’s imperative that the onsite engineer knows exactly who to contact to work out a solution. Sometimes that might be Princeton Hydro’s internal project manager, or sometimes it might be a regulatory official from NJDEP.

WEEKLY MEETINGS.  Another critical part of construction oversight is facilitating weekly coordination meetings. The weekly meeting is usually attended by the contractor, the engineering firm, and the client.  The parties will discuss what has happened thus far at the site and what still needs to happen, allowing them to establish action items. Occasionally, other entities like organizations that provided funding for a project or regulatory agencies, will also be involved in those conversations. The weekly meetings are designed to keep everybody on task and help to ensure every party’s goals and needs are being met.

DOCUMENTATION.  Anytime field work is being conducted, it is essential to document the happenings and the progress made. This documentation usually comes in the form of a Daily Field Report (DFR). A DFR includes information about the work performed on a given day, such as measurements, quantities of structures installed, and how that installation process went. Also included in the DFRs are clear and descriptive photographs.

COMMUNICATION.  Working on any project, it’s important to make sure all involved parties understand the reason behind each installation. It is often easier for a construction team to implement plans correctly if they know and understand why each part of it is important and included in the project. Explaining why a task needs to be completed also helps relieve tension that could potentially arise between the engineer and the contractor. It is essential to make sure every person on the project team is on the same page.

PUBLIC OUTREACH.  Another critical aspect of construction oversight is having the ability to successfully communicate with the public. Members of the community surrounding a site need to be kept apprised of the goings on so they can remain safe during the construction period and understand the goals of the project. When citizens understand the purpose and goals of a project, they are more likely to support and respect it.

REGULATORY COMPLIANCE.  Understanding the permitting surrounding a project is also essential to success as a construction oversight engineer. The engineer has to understand the ins and outs of the permitting and regulations in order to be able to make decisions about changes in the plan and to be able to successfully point the contractor in the correct and compliant direction.

Construction oversight is a tedious and incredibly important job, yet I really enjoy it because it gives me a new and better understanding of the engineering design process,” explains Casey. He feels it gives him a much more practical understanding of engineering design, as he has seen what kinds of plans are actually implementable and what that process looks like. “Watching a design plan get implemented brings the project full circle and allows me to take that knowledge and experience back to the office and back into the design process.

Princeton Hydro provides construction oversight services to private, public, and nonprofit clients for a variety of ecosystem restoration, water resource, and geotechnical projects across the Northeast.  Learn more.

Casey graduated from Virginia Tech in 2018 with a degree in Biological Systems Engineering and now works as a staff engineer for the firm with a focus in water resources engineering. He has experience in ecological restoration, flood management, water quality analysis, and best management practices. His experience also includes construction oversight for dam removal and restoration projects as well as design, technical writing, and drafting for a wide variety of water resources engineering projects. In his free time Casey very much enjoys travelling, hiking, skiing, and camping.

If you enjoyed this blog, check out another one from our “Day in the Life” series, and stay tuned for more:

A Day in the Life of a Stormwater Inspector

Green Infrastructure and Stormwater Utilities: Solutions to NJ’s Environmental Issues

Flooding, runoff, and storm surges, OH MY!

With increases in each of these occurring now, the imposition of green infrastructure and a stormwater utility fee are viable solutions to reducing their impacts. Plus, with the passing of the S-1073/A2694 bill in early 2019, the introduction of a stormwater utility became legal in New Jersey, making it the 41st state to do so.

On June 19, 2019, The Watershed Institute in Pennington, NJ held the “New Jersey Green Infrastructure & Stormwater Utilities Symposium” to address the environmental problems New Jersey faces and present solutions, including the stormwater utility. The event was geared for municipal officials, engineers, nonprofit leaders, and other interested parties, with an agenda full of expert speakers sharing insights and ideas on topics like the science of stormwater, New Jersey’s proposed stormwater rule changes, why green infrastructure and a stormwater utility fee matter, and possibilities for how to move New Jersey forward.

So, What is Green Infrastructure?

Brian Friedlich, the first presenter and a project manager for Kleinfelder, relayed that according to NJDEP, green infrastructure consists of “methods of stormwater management that reduce stormwater volume, flow, or characteristics by allowing the stormwater to infiltrate, be treated by vegetation or by soils, or be stored for use.” He also explained that green infrastructure can improve the environment and communities by providing community engagement, greening communities, addressing flooding, improving water quality by reducing CSOs, harvesting rainwater, increasing habitat for wildlife, and increasing property values.

After Brian’s presentation, a founding Principal of Princeton Hydro, Dr. Stephen Souza, now CEO of Clean Waters Consulting, urged that we should “turn down the volume,” when it comes to stormwater runoff. He explained that it is not enough to just manage peak flow of stormwater; we must also work to lower the volume of off-site stormwater discharge. So, how can you and your municipality do this? He offered six principles to designing successful green infrastructure projects:

  1. Treat stormwater as a resource
  2. Don’t make stormwater management an afterthought
  3. Attack the cause not the symptoms
  4. Turn your watershed inside out
  5. Think small to achieve big results
  6. Use nature as your model

Not only is successful implementation of green infrastructure important, but communal understanding of it may be more so. That is why Princeton Hydro partnered with New Jersey Future, Clark Caton Hintz, Rutgers Cooperative Extension Water Resources Program, FZ Creative, and municipal stakeholders to launch the New Jersey Green Infrastructure Municipal Toolkit. Filled with helpful information about green infrastructure, this free resource is extremely useful for gaining communal understanding, getting started, implementing nature-based stormwater solutions, and sustaining your program.

What is Stormwater and Why Should Municipalities Require a Utility Fee for It?

Before we get into why it is imperative for New Jersey municipalities to implement a stormwater utility fee, it is important to understand just what stormwater is, what it does, and how it affects New Jersey residents.

The name is pretty intuitive: stormwater is the water that comes from precipitation, whether that be rain, snow, or ice melt. With increasing levels of water from climate change impacts (i.e. storm surge, increased rainfall, sea level rise), stormwater management has become an issue for states all across the U.S., whether it’s an over abundance or lack thereof.

So, what’s happening in New Jersey? The stormwater infrastructure that is currently in place (storm drains, sewer piping, etc.) is aging and unable to effectively handle the amount of runoff that has been flowing through the region in recent years. This is causing increased nutrient runoff and flooding all over the state. And, with increasing global temperatures, this trend is likely to continue.

To combat these issues, New Jersey passed the S-1073/A2694 bill in January 2019, authorizing counties and municipalities, either separately or in combination with other municipalities, to begin implementing a stormwater utility fee to New Jersey residents.

The law itself states:

“Every sewerage authority is hereby authorized to charge and collect rents, rates, fees, or other charges for direct or indirect use or services of its stormwater management system. The stormwater service charges may be charged to and collected from the owner or occupant, or both, of any real property. The owner of any real property shall be liable for and shall pay the stormwater service charges to the sewerage authority at the time when and place where these charges are due and payable. The rents, rates, fees, and charges shall be determined in a manner consistent with the stormwater utility guidance manual created by the Department of Environmental Protection pursuant to section 24 of P.L.

Any stormwater service charge imposed pursuant to subsection a. of this section shall be calculated in a manner consistent with the guidance provided in the stormwater utility guidance manual created by the Department of Environmental Protection pursuant to section 24 of P.L.”

Essentially, this fee charges a chosen type of property owner within a given municipality or region a certain amount of money for the impervious area (mainly artificial structures like asphalt, concrete, stone, rooftops, etc. that water can’t seep through) they have on their property. Just how much that fee is and whether or not there’s a limit on the chargeable impermeable area are dependent on the government agency.

Since the impervious area blocks water from seeping into the ground, it becomes runoff and ends up in the stormwater drain. And, since New Jersey’s systems are growing old and less efficient, it makes sense to implement a fee for their use. Historically, general taxpayer dollars or legislative appropriations have been used to fund updates to aging infrastructure. Implementing a utility fee will create a consistent funding source to update and expand the current aging infrastructure so that flooding will occur less.

Other states, like neighboring Pennsylvania, have been proactive in addressing these impacts by implementing a stormwater utility fee. And, in Maryland, the state implemented a watershed restoration program and MS4 efforts that require stormwater utility fees. These initiatives have generated a job-creating industry boom that benefits engineers, contractors, and local DPWs. At the same time, Maryland’s program is improving the water quality in the Chesapeake Bay, and stimulating the tourism and the crabbing/fishing industry.

In relation to how urban cities are affected by stormwater, John Miller, the FEMA Mitigation Liaison, shared this helpful resource, “The Growing Threat of Urban Flooding: A National Challenge” during the symposium. It addresses the extent and consequences of urban flooding in the U.S., while exploring actions that can be taken to mitigate future flooding. Amongst other recommendations made, the research group encouraged Congress and state officials to “develop appropriate mechanisms at the federal, state, and local level to fund necessary repairs, operations, and upgrades of current stormwater and urban flood-related infrastructure.”

A stormwater utility should not only be reviewed in the context of cost, since it meets all three elements of a triple-bottom line: social, environmental, and financial. Other considerations are the fact that allowing stormwater utilities in New Jersey will create jobs, help reduce flood impacts, enhance water quality, improve our fisheries, and preserve our water-based tourism economy.

When it comes to green infrastructure, Princeton Hydro has been a leader in innovative, cost-effective, and environmentally sound stormwater management systems since its inception. Long before the term “green infrastructure” was part of the design community’s lexicon, the firm’s engineers were integrating nature-based stormwater management systems to fulfill such diverse objectives as flood control, water quality protection, and pollutant load reduction. And, Princeton Hydro has developed regional nonpoint source pollutant budgets for over 100 waterways. The preparation of stormwater management plans and design of stormwater management systems for pollutant reduction is an integral part of many of the firm’s projects. So, we are major proponents of implementing stormwater utilities and green infrastructure into our everyday lives.

Do you have questions regarding green infrastructure or stormwater utilities? Contact us here.

 

Barnegat “Clean Water, Beautiful Bay” Project wins Governor’s Environmental Excellence Award

The American Littoral Society was awarded the Governor’s Environmental Excellence Award in the Water Resources category this year for their Clean Water, Beautiful Bay projects in Barnegat Bay.

According to the Barnegat Bay Partnership, over 33% of the Barnegat Bay watershed has been altered to urban land cover. The construction of communities, roads and business has greatly increased the total amount of impervious surfaces in the watershed. With the added impervious cover has come a steady increase in the amount of nutrients, sediment, pathogens and other contaminants transported into the Bay by runoff. This accelerated the degradation of the Bay’s water quality and triggered changes to the Bay’s ecology.

Recognizing the importance of the Barnegat Bay, the American Littoral Society proposed green infrastructure measures to decrease runoff volume and nutrient loading to the bay and its tributaries.  Princeton Hydro was contracted by American Littoral Society to design four projects and provide oversight on the construction of the bioretention basins, rain gardens, porous pavement, etc. The projects were funded by the largest 319 grant ever administered by the NJDEP, totaling around $1 million. The project aimed to:

  1. Improve the water quality of Barnegat Bay by reducing the influx of nitrogen and other pollutants originating from the Long Swamp Creek and Lower Toms River watersheds. And, therefore, improve the water quality of both Long Swamp Creek and Lower Toms River, thus moving them closer to removal from the NJDEP’s 303D list of impaired waters.
  2. Demonstrate that relatively low-cost, stormwater system retrofits are capable of decreasing runoff volume, increasing stormwater recharge, and removing nutrients, and can be effectively implemented in even highly developed watersheds.
  3. Educate the public, elected and appointed officials and public work personnel of the types and benefits of bioretention, biodetention and infiltration stormwater management techniques.

From our team, Dr. Steve Souza and Paul Cooper worked to develop a unique Scoring Matrix for the selection of best management practices for retrofit projects. They have been asked several times to present on the matrix and demonstrate how to beneficially utilize it. In addition to design, Princeton Hydro participated in much of the public outreach for these projects, including giving presentations, leading workshops, and helping high school students plant vegetation around their school.

RWJ Barnabas Community Medical Center Educational Sign

According to NJDEP, the Clean Water, Beautiful Bay projects were successful in reducing flooding in a private residential homeowner community, improving a stormwater basin and public open space area at a hospital, introducing golf course staff and golfers to environmentally friendly golf course management practices, and engaging high school students in planting projects on school property.  The projects demonstrated that green infrastructure construction projects can reduce flooding and water pollution at business, community, school and public recreation locations, and can be publicly accepted and valued for the environmentally protective and restorative benefits they provide to Barnegat Bay.

Last year, the American Littoral Society’s Barnegat Bay Green Infrastructure Project was named “Project of the Year” by The American Society of Civil Engineers Central Jersey Branch.

For more information on Princeton Hydro’s green infrastructure and stormwater management services, please visit: bit.ly/stormwatermgmt 

Deal Lake Commission Wins Award For “Lake Management Success”

NALMS President Dr. Frank Browne with Princeton Hydro Co-Founder Dr. Stephen Souza accepting the “Lake Management Success Stories” award on behalf of the Deal Lake Commission.

The Deal Lake Commission’s success in the management and restoration of Deal Lake garners a prestigious award from the North American Lake Management Society

 

The North American Lake Management Society (NALMS) awarded the Deal Lake Commission (DLC) with its “2018 Lake Management Success Stories” award. The award, which was presented at the NALMS 38th International Symposium, is given annually to recognize and honor an individual or group that has made significant lake/reservoir management accomplishments.

The DLC has overseen the management and restoration of Deal Lake and its watershed since 1974. Consisting of appointees from the seven municipalities abutting the lake, the DLC’s mission is to provide leadership, guidance and resources to preserve and restore Deal Lake and its tributaries as a healthy and stable ecosystem. A true challenge in an urban environment.

“It has been both a pleasure and an honor to work with the Deal Lake Commission for the past 35 years,” said Dr. Stephen Souza, Princeton Hydro Co-Founder. “They have shown great resolve to tackle some serious problems affecting the lake and its watershed, serving as a great example for other organizations involved in the restoration of urban lakes.”

Deal Lake is New Jersey’s largest coastal lake, encompassing 162 acres. The lake is surrounded by a 4,400-acre highly urbanized watershed, with the majority of development dating back to the 1960s-1980s. As a result, stormwater management, particularly with respect to water quality and volume management can be especially challenging. The DLC has embraced the numerous challenges, and has worked diligently over the years to correct these issues.

Restored shoreline at the Asbury Park Boat Launch in Deal LakeAt the forefront, the DLC has been managing the primary cause of the lake’s eutrophication: stormwater runoff from the surrounding watershed. In 2014, with funding provided through the NJDEP’s 319(h) program, the DLC implemented a number of demonstration projects, specifically the construction of three bioretention basins, the installation of a large manufactured treatment device, the vegetative stabilization of over 500 feet of heavily eroded sections of the shoreline, and the construction of a rain garden at the Deal Lake boat launch.

Collectively these projects were shown to eliminate localized flooding, decrease floatable loading, and reduce nutrient, sediment and pathogen inputs to the lake. These and other projects implemented by the DLC over the years show that despite Deal Lake being located in a highly urbanized watershed, it is possible to implement cost-effective green infrastructure and stormwater retrofit solutions.

Deal Lake recently won another very competitive 319 (h) program for $735,000 for MTDs, tree boxes, and Green infrastructure improvements to Deal Lake, Sunset Lake and Wesley Lake.

The NALMS award nomination application, which was submitted by Dr. Souza, listed a number of additional achievements of the DLC, including:

  • Educating the community, including school children, to increase awareness and appreciation for the natural environment of the lake;
  • Sponsoring and conducting public engaged spring and fall cleanups, which annually result in the removal of 1,000s of pounds of refuse and debris from the lake;
  • Helping homeowners and public groups recognize and mindfully solve problems related to water quality, siltation, and lake restoration;
  • Serving as the liaison between lakeside communities, County agencies, and the NJDEP;
  • Microbial source tracking investigations with Monmouth University and pathogen source identification work with Clean Ocean Action to decrease E. coli loading;
  • Carp removal, invasive species management, and goose control initiatives;
  • Working with State legislators to implement stricter stormwater controls to reduce pollutant loading, increase storm resiliency, and improve recreational fishing;
  • Participating in the NALMS Secchi Dip In; and
  • Proactively suggesting and supporting community-based, practical ideas to improve the overall environmental quality of the lake and its enjoyment by boaters, anglers, hikers, residents and visitors.

For more information on the Deal Lake Commission, visit DealLake.org.

The successful, long-term improvement of a lake or pond requires a proactive management approach that addresses the beyond simply reacting to weed and algae growth and other symptoms of eutrophication. Our staff can design and implement holistic, ecologically-sound solutions for the most difficult weed and algae challenges. Visit our website to learn more about Princeton Hydro’s lake management services: http://bit.ly/pondlake.

UPDATE: The Columbia Dam Is Coming Down

It’s happening! The Columbia Dam on the Paulins Kill in Northern New Jersey is finally coming down thanks to a successful collaboration between The Nature Conservancy, American Rivers, U.S. Fish and Wildlife Service, NJDEP Division of Fish and Wildlife Service, and Princeton Hydro. The first cut on the main dam wall was made just two weeks ago, and the water has started flowing downstream as the concrete is slowly being removed by the contractors RiverLogic Solutions and SumCo Eco-Contracting.

“In New Jersey, successful dam removal projects are often the result of partnerships between nonprofit organizations, federal and state agencies, consultants, and others working together toward the common goal of river restoration,” exclaimed Dr. Laura Craig, Director of River Restoration, American Rivers. “The first day of dam demolition is always a joyous occasion for project partners, but I was especially happy to see the river flowing through the breached Columbia Dam for the first time after working so intensely on this project for the last few years.”

Princeton Hydro has been involved with the engineering and restoration design from the beginning, so we’re very excited to report on this major update.  Our team of engineers and ecologists studied the feasibility of removal as requested by American Rivers in partnership with the New Jersey chapter of The Nature Conservancy.  We investigated, designed, and prepared the necessary permits for the removal of this dam. And, now we’ve been subsequently been hired to provide construction administration services during the removal process, which means we get to see the dam come down firsthand, piece by piece!

“It is truly amazing and exciting to finally see the main and remnant dams come down, as I have been involved in this restoration effort since the feasibility stage,” said Kelly Klein, Senior Project Manager, Princeton Hydro. “I am so honored to be part of this dynamic team and to collaborate with our project partners during every stage of this dam removal.”

Geoff Goll, Princeton Hydro and Beth Styler Barry, The Nature Conservancy on site August 3, 2018. Photo credit: Laura Craig, American Rivers

“On Friday, August 3rd 2018, we began demolition of the 300 foot-long, 18 foot-high Columbia Dam. The Paulins Kill will run freely to meet the Delaware River for the first time in 109 years,” said New Jersey Nature Conservancy’s Beth Styler Barry. “The benefits of reconnecting these two freshwater ecosystems will be immediate and impact creatures that live in and near the stream, as well as people who come out to paddle, fish or enjoy the wildlife. Dam Removal projects are exciting, ecologically important and also a challenge, this project is a good example of partners coming together to get a great restoration project done.”

Because this is a big deal, we want to keep *YOU* updated on what’s happening from the field. Moving forward, we’ll post weekly blogs with scenes from the site.  Here’s a snapshot of what’s been happening over the last last two weeks:

August 1, 2018. Photo credit: Casey Schrading, Princeton Hydro

In order to make the first saw cut into the dam, Princeton Hydro and RiverLogic Solutions first identified the locations of the drill holes. These drill holes are used to feed the diamond wire through the dam for saw cutting.

August 1, 2018. Photo credit: Casey Schrading, Princeton Hydro

The crew placed the saw cutter machine on the staging area on top of the apron and prepared for the cut.

August 3, 2018. Photo credit: Princeton Hydro

In order to create a notch in the dam, the crew supplemented the saw cutting with hammering.

August 3, 2018. Photo Credit: The Nature Conservancy, Columbia Dam Volunteer Drone Team

August 3, 2018. Photo credit: Erik Sildorff, Delaware Riverkeeper Network

August 7, 2018. Photo credit: Casey Schrading, Princeton Hydro

Since the high water level was now higher than the bottom of the breach, water is able to flow in and over the notched section.

August 14, 2018. Photo credit: RiverLogic Solutions

Because of high flows of water from recent storm events, the dam breach is being widened to allow for larger flows of water to move downstream during high flow events. 

Additionally, a few weeks ago we reported on the lowering of the water levels and removal of the remnant dam downstream (below).

PHOTOS: Columbia Dam Removal

Since then, the remnant dam has been completed removed and the area has been stabilized.

July 23, 2018. Photo credit: Casey Schrading, Princeton Hydro

Now, the water can freely flow through this section of the Paulins Kill.

And, in case you missed it, we celebrated the commencement of the Columbia Dam removal with NJDEP’s Commissioner Catherine McCabe and our project partners. Full story below:

Celebrating the Columbia Dam Removal

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast. To learn more about our fish passage and dam removal engineering services, visitbit.ly/DamBarrier.

Celebrating the Columbia Dam Removal

A view of the Columbia Dam at the beginning of the removal process.

On a bright, sunny day in Warren County, Princeton Hydro celebrated the Columbia Dam Removal Project with New Jersey Department of Environmental Protection (NJDEP) Commissioner Catherine McCabe, The New Jersey Nature Conservancy (event organizer), American Rivers, U.S. Fish and Wildlife Service (USFWS), NJDEP Division of Fish and Wildlife Service, RiverLogic Solutions, and SumCo Eco-Contracting.

Beth Styler-Barry, River Restoration Manager, New Jersey Nature Conservancy

Overlooking the soon-to-be removed, century-old, hydroelectric Columbia Dam, key stakeholders, including Princeton Hydro’s President Geoffrey Goll, P.E. and New Jersey Nature Conservancy’s Director Barbara Brummer, remarked on the success of the project, collaborative team efforts, and future benefits to the Paulins Kill habitat.

NJ Nature Conservancy’s River Restoration Manager, Beth Styler-Barry thanked project funders including NJDEP’s Office of Natural Resource Restoration, USFWS’s Fish Passage Program, National Fish and Wildlife Foundation’s Bring Back The Natives program, Natural Resources Conservation Service’s Regional Conservation Partnership Program, New Jersey Corporate Wetlands Restoration Partnership, Leavens Foundation, Tom’s of Maine, and Nature Conservancy members and donors.

“We made a commitment early-on to a 10-year monitoring and measurement plan. The removal of Columbia Dam is an opportunity to gain new knowledge and generate data that builds the case for this type of restoration. We’ll be looking at everything from mussels to temperature to geomorphological changes to increasing our targeted efficiencies. We’re also going to use images taken from repeated drone flyovers to look closely at changes in topography,” said Styler-Barry.

NJDEP Commissioner Catherine McCabe with NJ Division of Fish & Wildlife and NJDEP officials.

NJDEP Commissioner Catherine McCabe added, “The Columbia Dam is ranked in the top 5% of the nearly 14,000 dams that were assessed for priority. It will give us one of the most bangs for our buck in terms of fish and native species that we’ll be able to bring back up here.” She added, “This is exactly what Natural Resources Damages funds should be used for, and we are thrilled to see it come to fruition.”

Geoffrey Goll, P.E., President, Princeton Hydro

Back in the day, this dam structure was a marvel of engineering. Because concrete was very expensive during the time of construction, a patented, innovative “ransom hollow” design was used, which means it has a hollow center with series of doorways underneath the dam, explained Geoffrey Goll, P.E., President of Princeton Hydro. However, sustainability and climate change are very important issues today and must be taken into consideration for the life-cycle of a dam.

“Removal is a logical step in the history of this dam. Dam removals are the most impactful restorations. They provide the most ecological uplift and improvement for rivers,” Goll stated.

For Princeton Hydro, this project involved every discipline we have in the firm: civil engineering, fishery biology, wetland science, hydraulics, geotechnical engineering, and regulatory work. We were contracted by American Rivers to investigate, design, and permit for the removal of this dam for the New Jersey Nature Conservancy. Our team of engineers and ecologists studied the feasibility of removal by collecting sediment samples, performed bioassay tests, and conducted a hydraulic analysis of upstream and downstream conditions. Currently, we are providing construction administration services during the removal process. This project is a great example of our ability to complete multi-disciplinary projects in-house.

Project partners ready for the first hammer with the celebratory dynamite and sledge hammers.

At the end of the press conference, project partners celebrated the anticipation of the “first hammer” in the near future with an imitation dynamite siren and plastic sledge hammers. It was truly a keystone moment for everyone involved in this project.

The remnant dam downstream has already been removed and the main dam is due to be removed very soon. Check out our previous story with a series of photos documenting this first-step in the overall dam removal process: bit.ly/ColumbiaDamRemoval. Stay tuned for photos during the main dam removal process too.

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast. To learn more about our fish passage and dam removal engineering services, visitbit.ly/DamBarrier.