Don’t Get Sunk: Everything You Need to Know About Sinkholes (Part One)

Photo by Steven Reilly/New Jersey Herald

Sinkholes are a phenomenon that tend to baffle and frighten most people. How is it possible that the ground beneath our feet could just drop? How do we know if we’re nearby a sinkhole? What should we do if we see one? How are sinkholes fixed? The mystery of the unknown around sinkholes can be quite unnerving.

Have no fear, we’ve got answers to all of those questions and more! In this two-part blog series, our experts share their knowledge and provide important information about this scary occurrence. In part one, we provide a detailed look at what a sinkhole is, three different types of sinkholes, and what causes them to form. In part two, we explore how to detect sinkholes and the steps taken to repair them.

What is a Sinkhole?

Sinkholes are a common phenomenon around the world. They result from both man-made and natural causes. Marshall Thomas, a Princeton Hydro geologist, describes sinkholes as “depressions observed from the surface, caused by dissolution of carbonate rocks.” In other words, sinkholes form when the rock below the land surface gets dissolved by water that penetrates the surface and continues to move downward, further into the subsurface.

Most common in areas with “karst terrain,” or types of rocks that can easily be dissolved by groundwater, sinkholes can go undetected for years until the space underneath the surface gets too big or enough of the surface soil is washed away. Sometimes the holes are small, measuring a few feet wide and ten feet deep. Sometimes the holes are hundreds of miles wide and deep. However, all of them can be dangerous.

Sinkholes are found throughout the world. States like Pennsylvania, Texas, Florida, Alabama, Tennessee, and Missouri are at higher risk for sinkholes because they tend to have more soluble rocks like salt beds and domes, gypsum, limestone, and other carbonate rocks. People living in these states are recommended to have professionals look at any property they intend to buy to make sure it isn’t in an area above soluble rock.

Types of Sinkholes

Not all sinkholes are the scary, earth-falling-out-from-underneath-your-feet events. Some occur slowly over time and are very evident from the surface. Geologists classify sinkholes in three major types. Their formation is determined by the same geological processes, barring a few differences. Let’s dive in!

1. Dissolution Sinkholes

Illustration by USGSDissolution sinkholes start to form when limestone or dolomite is very close to the soil surface, usually covered by a thin layer of soil and permeable sand which washes away or is eroded. Rain and stormwater runoff gradually percolate through crevices in the rock, dissolving it. Consequently, a bowl-shaped depression slowly forms.

Sometimes, dissolution sinkholes become ponds when the depression gets lined with debris, which traps water inside. Dissolution sinkholes develop gradually and are normally not dangerous. However, the ones that become ponds can drain abruptly if water breaks through the protective bottom layer.

Fun fact: Most of Florida’s lakes are actually just large sinkholes that filled up with water!

2. Cover-Subsidence Sinkholes

Illustration by USGSThis type of sinkhole, which starts with the dissolution of the underlying carbonate bedrock, occurs where the covering sediment is permeable (water can pass through it) and contains sand. First, small pieces of sediment split into smaller pieces and fall into openings in the carbonate rock underneath the surface. With time, in a process called piping, the small particles settle into the open spaces. This continues, eventually forming a dip in the surface ranging from one inch to several feet in depth and diameter. Again, these aren’t the sinkholes movies are made about.

3. Cover-Collapse Sinkholes

Illustration by USGSThis type of sinkhole is the one making headlines and causing fear. In order for cover-collapse sinkholes to happen, the covering soil has to be cohesive, contain a lot of clay and the bedrock has to be carbonate. Similar to the cover-subsidence sinkholes, the cohesive soil erodes into a cavity in the bedrock. The difference with this is that the clay-filled top surface appears to remain intact from above. However, underneath, a hollowed out, upside down bowl shape forms. That hollowing gets bigger and bigger over time until eventually, the cavity reaches the ground surface, causing the sudden and dramatic collapse of the ground. Just like that, poof, we have a sinkhole that appears to be surprising and abrupt but really has been brewing for many years.

What Causes a Sinkhole?

Sinkholes can be natural or man-made. The most common causes of a sinkhole are changes in groundwater levels or a sudden increase in surface water.

Intensive rain events can increase the likelihood of a sinkhole collapse. Alternatively, drought, which  causes groundwater levels to significantly decrease, can also lead to a greater risk of collapse of the ground above. In a world with a greater variability in rainfall and drought events due to climate change, sinkholes may become a more common occurrence around the world.

Humans are also responsible for the formation of sinkholes. Activities like drilling, mining, construction, broken water or drain pipes, improperly compacted soil after excavation work, or even significantly heavy traffic (heavy weight on soft soil) can result in small to large sinkholes. Water from broken pipes can penetrate through mud and rocks and erode the ground underneath and cause sinkholes.

Most commonly, human-caused sinkholes are the result of:

  • Land-use practices like groundwater pumping, construction, and development
  • Changing of natural water-drainage patterns
  • Development of new water-diversion systems
  • Major land surface changes, causing substantial weight changes

In some cases, human-induced sinkholes occur when an already forming sinkhole is encountered during construction processes such as excavation for stormwater basins and foundations. Dissolution of bedrock generally occurs in geologic time-frames (thousands of years). In these cases, the excavation process has removed the covering soils, decreasing the distance between the top of the void and the ground surface.  

In other cases, voids in the bedrock are generated due to rock removal processes such as hammering and blasting. Hammering and blasting can generate fractures or cracks in the bedrock that soil can then erode into. A void in the bedrock may already exist, however, the process of removing the bedrock by hammering and/or blasting can speed up the meeting of the upside-down bowl and the surface that much quicker. One site where this happened has experienced over 35 sinkholes in 4 years.

Overall, it’s generally not a good idea to pump groundwater or do major excavation in areas that are prone to sinkholes. According to the USGS, over the last 15 years sinkhole damages have cost on average at least $300 million per year. Because there is no national tracking of sinkhole damage costs, this estimate is probably much lower than the actual cost. Being more mindful about the subsurface around us and our actions could help lower the average yearly cost in damages and even save lives.

Photo by Barbara Miller PennLive Patriot News

Stay tuned for Part Two of this blog series in which we explore we explore how to detect sinkholes and the steps taken to repair them! For more information about Princeton Hydro’s Geotechnical Engineering services, go here: http://bit.ly/PHGeotech

Special thanks to Princeton Hydro Staff Engineer Stephen Duda, Geologist Marshall Thomas, and Communications Intern Rebecca Burrell for their assistance in developing this blog series.

Sources:

Habitat Fragmentation – Culvert Blockages and Solutions

Capture

Culvert that is “perched” due to scour by high velocity flows through the pipe. ©Princeton Hydro.

The Bucks County Chapter of Trout Unlimited (Pennsylvania) and the Cooks Creek Watershed Association were featured in the Summer 2013 edition of Trout magazine, TU’s national publication, for their culvert inventory work in the Cooks Creek watershed.  Princeton Hydro was glad to assist via directly investigating and training of volunteers to inspect and document potential culverts in need of retrofit.  Princeton Hydro also completed design concepts and opinion of costs for two example culverts.  Identified culverts in need of retrofit will help the creek’s wild brown and brook trout.  Princeton Hydro based the training on the Vermont guidelines for rating culverts for pass-ability.  In this small watershed a total of 97 culverts were identified with 32 of them as potential barriers, and 11 identified as “high priority” in need of retrofit.

Why worry about culverts, you say?

One of the most unforeseen danger to the biodiversity in our river networks is habitat fragmentation through un-passable culverts throughout the United States.  While blockages via dams number upward of 100,000 or so, the blockages created by ecologically and biologically inefficient culverts is likely to number in the millions.   The majority of these culverts are located in headwater areas of rivers, which entail greater than 50% of most river miles in a watershed; a large cumulative impact.  As a result, native key headwater species such as brook trout (Salvelinus fontinalis) in the East and cutthroat trout (Oncorhynchus clarkii) in the West have had their historic ranges reduced to a fraction of their former extent.

Historically, culverts were designed by civil engineers to maximize flow capacity and minimize pipe size in order to create the most economical structure for developers, transportation authorities, and municipalities.  The unfortunate by-product of such a design approach is that water velocity through culverts is extremely high, often running in supercritical flow, even during base flow conditions, and the smooth and featureless surfaces in the structure make it extremely difficult to navigate.  To add insult to injury, the high velocity flows also scour and erode the stream channel immediately downstream of the culvert, leaving the pipe too high out of the new channel (“perched pipes”) for organisms to pass.  Downstream water dependent organisms cannot pass upstream to new habitat, and those populations upstream become extirpated due to downstream migration and mortality, and the lack of an ability to return or be replaced.  A study of impacts of fragmentation on brook trout is ongoing by the USGS Conte Anadromous Fish Research Center (USGS CAFRC) and others, and a study recently completed documented the impacts of fragmentation of local populations provides an informative view of the blockage potential of culverted streams.

There is hope in the re-connection of stream habitat through new research and initiatives developed since 1999.  One such approach is through the Stream Simulation design originally developed in its present form at the Washington State Department of Fish & Wildlife and adopted by the US Forest Service, US Fish and Wildlife Service, as well as others, and was also adopted shortly thereafter and refined by the University of Massachusetts, Amherst Extension (Stream Continuity model) for use in Northeastern States (initially in the Massachusetts River and Stream Crossing Standards, and then adopted in similar form by surrounding states).  Through the Stream Simulation/Continuity method, a culvert is not simply measured in terms of hydraulic efficiency, but also in terms of ecological and biological efficiency.

In the most basic terms, Stream Simulation (Continuity) requires a crossing that has a minimum width of the bankfull flow of the natural channel upstream and downstream, plus more width to allow passage of terrestrial organism passage such as reptiles and amphibians (in the UMASS model the increase in width is 20% wider than bankfull, but in the current Washington State model they use 20% plus 2 feet).  The other part of the design requirement is an opening area to length ratio to allow the maximum amount of natural light penetration into the culvert (openess ratio), as many organisms, such as fish, are too intimidated to travel through dark culverts.  Other design requirements include the use of slopes and velocities that allow for fish passage, and roughness (i.e. placement of natural substrate) to also slow down the flow.

The key challenge for the retrofitting of culverts to be more passable is cost.  As with any civil engineering project, the larger it is, the more expensive.  To replace a 36 inch diameter culvert with a 10-14 foot wide structure could increase the cost by 10-fold.  However, there are ways in completing an economic analysis to justify the costs.  For example, most culverts were historically only designed to pass storms up to the 25-year event, but in even more cases, never were sized by engineers.  A larger culvert will increase its capacity and reduce overtopping events that would require road closings and worse, cause the roadway to collapse.  Road closings require emergency management and road crews to set up detours and slowing down commerce, or worse require repetitive reconstruction efforts that, over time, may exceed the cost of installing a Stream Simulation designed culvert.

DSCN2588

Same culvert as in photograph above, after the retrofit using Culvert Simulation. ©Princeton Hydro.

Other ways of encouraging installation of these larger and passable culverts is through the permitting process.  In New England, the US Army Corps of Engineers, allows for a by-pass of a formal review for their approval if the Stream Simulation guidelines are followed. This approach can save a significant amount of time to fast-track a retrofit.  To complement the Corps’ permit facilitation process, the states of Connecticut, Massachusetts, New Hampshire, and Vermont, have developed stream crossing guidelines to meet the Corps’ permit by rule compliance.  These states have even instituted state level regulations requiring aquatic organism passage via the Stream Simulation model.

Princeton Hydro was contracted to design a culvert retrofit to replace a 36 inch diameter culvert with a 12 foot wide arch culvert on a tributary of West Brook which is being monitored as part of the USGS CAFRC research project in Massachusetts.  This retrofit will be used to assess the increase in efficiency of headwater stream accessibility by local brook trout populations.

It would appear that the Stream Simulation or Continuity model is catching on, however, there needs to be more outreach and changes to existing rules in other regions of the US.  Further studies, such as that being conducted by USGS and their partners, will determine the true benefits of increasing culvert fish passage efficiency and bolster the economics of protecting fish populations for future generations.
——-
Geoffrey M. Goll, P.E.
Vice President and Founding Partner

“like” us on Facebook by clicking the link at the bottom of the page!