Dr. Fred Lubnow of Princeton Hydro Featured in Magazine Article on Chautauqua Lake

The U.S. is home to thousands of lakes both natural and manmade. Lakes are incredibly important features in the landscape that provide numerous beneficial services, including domestic water supply, hydro-electric power, agricultural water supply, recreation, and tourism. They also provide essential habitat for fish, wildlife and aquatic organisms.

Lakes are complex and dynamic systems, each situated in a unique landscape context. Maintaining the ecological health of a lake is no easy feat. A lot goes on behind the scenes to maintain water quality and a balanced lake ecosystem. Successful, long-term lake management requires a proactive approach that addresses the causes of its water quality problems rather than simply reacting to weed and algae growth and other symptoms of eutrophication.

Chautauqua Magazine recently published an article about the science behind the management of Chautauqua Lake, which features our Director of Aquatic Programs Dr. Fred Lubnow. We’ve included an excerpt below. Click here to view the full article and photos:

Dr. Fred Lubnow is a scientist and director of aquatic programs at Princeton Hydro, a consulting organization based in Exton, Pennsylvania, that is often called on to support lake and watershed regions that want to develop a long-term plan for lake conservation.

He says that while his firm focuses on the development of data and intelligence to inform decision making in regard to freshwater ecosystems, his work is really about coalition building.

“As a scientist and a consultant, you learn over time that you are building a coalition stakeholders and determining what we can agree on to help everyone in the community,” Lubnow said.

Ten years ago, Princeton Hydro was hired to do some stream and inlet monitoring for various stakeholders at Chautauqua Lake. More recently, they’ve been contracted to conduct third-party monitoring of the impacts of the Spring 2019 herbicide applications in the south basin of Chautauqua Lake…

Continue reading!

 

Princeton Hydro is the industry leader in lake restoration and watershed management. We have conducted diagnostic studies and have developed management and restoration plans for over 300 lakes and watersheds throughout the country. This has included work for public and private recreational lakes, major water supply reservoir, and watershed management initiatives conducted as part of USEPA and/or state funded programs. For more information about our lake management services, go here: http://bit.ly/pondlake. 

BOROUGH OF RINGWOOD INITIATES FIRST-IN-STATE REGIONAL APPROACH TO LAKE MANAGEMENT THROUGH PUBLIC-PRIVATE PARTNERSHIP

NorthJersey.com File Photo
The Borough of Ringwood initiates a unique public-private partnership
with four community lake associations to
holistically manage watershed health related to private lakes

Providing drinking water to millions of New Jersey residents, the Borough of Ringwood is situated in the heart of the New Jersey Highlands and is home to several public and private lakes that sit within the Ramapo Mountains. In order to take an active role in the management of these natural resources within multiple watersheds, the Borough of Ringwood will be the first municipality in the state of New Jersey to take a regional approach to private lake management through a public-private partnership (PPP) with four lake associations.

The four private sets of lakes targeted in the plan— Cupsaw, Erskine, Skyline, and Riconda —were created by the Ringwood Company in the 1920s and 30s to promote the municipality as a hunting and fishing retreat and a summer resort. They currently provide private beach clubs and recreational opportunities for surrounding homeowners who can opt to join as members.

Map Showing the Four Private Lakes in the PPP holistic watershed management plan

Generally, the health of a private lake is funded and managed in isolation by the governing private lake association group. Ringwood Borough Manager Scott Heck’s concept was to design and implement a municipal-wide holistic watershed management plan to use as a tool to identify capital priorities to enhance water quality throughout the community. Mr. Heck hired Princeton Hydro, a leader in ecological and engineering consulting to design this innovative project.

Cupsaw Lake “This regional approach to lake and watershed management is a no-brainer from a scientific, technical, and community point of view. Historically, however, municipal governments and private lake associations have rarely partnered to take such an approach,” said Princeton Hydro’s Senior Project Manager, Christopher Mikolajczyk, who is a Certified Lake Manager and lead designer for this initiative. “We’re thrilled to work with the Borough of Ringwood and the New Jersey Highlands Council to set a precedent for this logical watershed management strategy, which opens the door for future public-private partnerships.”

As part of this project, a Watershed-based Assessment will be completed. The following objectives will be met:

  1. Identification, quantification, and prioritization of watershed-based factors which may cause eutrophication;
  2. Identification of watershed management measures needed to address general causes of water quality impairments;
  3. Identification of the relative cost of the recommended general watershed management measures;
  4. The generation of a schedule, based on priority, for the implementation of the recommended watershed management measures; and
  5. A general assessment report will be authored at the conclusion of the study.

Skyline Lake in the FallFunding for the Watershed-based Assessment for the Lakes of the Borough of Ringwood is being provided by the New Jersey Highlands Council through a grant reimbursement to the Borough of Ringwood. As part of the PPP , the Borough of Ringwood will review and where feasible implement any suggested actions surrounding the lakes. The final report, provided to the Borough by Princeton Hydro, will identify and prioritize watershed management techniques and measures that are best suited for immediate and long-term implementation, as well as provide cost projections for implementation in both the short-term and long-term.

This integrated approach to watershed and lake management is an important preventative measure to improve water quality for millions of people and reduce potential future incidents of aquatic invasive species and harmful algal blooms throughout the region.

For more information about the PPP, check out today’s NorthJersey.com news story. To learn more about Princeton Hydro’s lake and pond management services, go here: http://bit.ly/pondlake.

Enjoy Your Labor Day Nature Adventures Responsibility

Seven Tips for Environmentally-Friendly Outdoor Fun

Labor Day is right around the corner! Many people will soon be packing up the car with fishing gear and heading to their favorite lake for a fun-filled weekend.

As biologists, ecologists, environmentalists, and outdoor enthusiasts, all of us at Princeton Hydro fully enjoy getting outside and having fun in nature. We also take our responsibility to care for and respect our natural surroundings very seriously. We play hard and work hard to protect our natural resources for generations to come.

These seven tips will help you enjoy your Labor Day fishing, boating, and outdoor adventures with minimal environmental impact:

  • Before you go, know your local fishing regulations. These laws protect fish and other aquatic species to ensure that the joys of fishing can be shared by everyone well into the future.

  • Reduce the spread of invasive species by thoroughly washing your gear and watercraft before and after your trip. Invasives come in many forms – plants, fungi, and animals – and even those of microscopic size can cause major damage.

  • Stay on designated paths to avoid disrupting sensitive and protected areas, like wetlands, shorelines, stream banks, and meadows. Disturbing and damaging these sensitive areas can jeopardize the health of the many important species living there.

  • Exercise catch and release best practices. Always keep the health of the fish at the forefront of your activities by using the right gear and employing proper techniques. Get that info by clicking here.

  • Use artificial lures or bait that is native to the area you’re fishing in. Live bait that is non-native can introduce invasive species to water sources and cause serious damage to the surrounding environment.

  • Plan ahead and map your trip. Contact the office of land management to learn about permit requirements, area closures and other restrictions. Use this interactive map to find great fishing spots in your area, the fish species you can expect to find at each spot, nearby gear shops, and more!

Armed with these seven tips, you can now enjoy your weekend while feeling rest assured that you’re doing your part to protect the outdoor spaces and wild places we all love to recreate in! Go here to learn about some of the work Princeton Hydro does to restore and protect our natural resources.

120903 Dock
“Respect nature and it will provide you with abundance.”

–compassionkindness.com

Managing Urban Stormwater Runoff and Revitalizing Natural Habitat at Harveys Lake

Measuring 630+ acres, Harveys Lake, located in Luzerne County, Pennsylvania, just northeast of Wilkes-Barre, is the largest natural lake (by volume) within the Commonwealth of Pennsylvania, and is one of the most heavily used lakes in the area. It is classified as a high quality – cold water fishery habitat (HQ-CWF) and is designated for protection under the classification.

Since 2002, The Borough of Harveys Lake and the Harveys Lake Environmental Advisory Council  has worked with Princeton Hydro on a variety of lake management efforts focused around maintaining high water quality conditions, strengthening stream banks and shorelines, and managing stormwater runoff.

Successful, sustainable lake management requires identifying and correcting the cause of eutrophication as opposed to simply reacting to the symptoms of eutrophication (algae and weed growth). As such, we collect and analyze data to identify the problem sources and use these scientific findings to develop a customized management plan that includes a combination of biological, mechanical, and source control solutions. Here are some examples of the lake management strategies we’ve utilized for Harveys Lake:

 

Floating Wetland Islands

Floating Wetland Islands (FWIs) are an effective alternative to large, watershed-based natural wetlands. Often described as self-sustaining, FWIs provide numerous ecological benefits. They assimilate and remove excess nutrients, like nitrate and phosphorous, that could fuel algae growth; provide habitat for fish and other aquatic organisms; help mitigate wave and wind erosion impacts; and provide an aesthetic element. FWIs are also highly adaptable and can be sized, configured, and planted to fit the needs of nearly any lake, pond, or reservoir.

Five floating wetland islands were installed in Harveys Lake to assimilate and reduce nutrients already in the lake. The islands were placed in areas with high concentrations of nutrients, placed 50 feet from the shoreline and tethered in place with steel cables and anchored. A 250-square-foot FWI is estimated to remove up to 10 pounds of nutrients per year, which is significant when it comes to algae.

Princeton Hydro worked with the Harveys Lake Environmental Advisory Council and the Borough of Harveys Lake to obtain funding for the FWIs through the Pennsylvania Department of Environmental Protection (PADEP).

 

Streambank & Shoreline Stabilization

Harveys Creek

The shoreline habitat of Harveys Lake is minimal and unusual in that a paved road encompasses the lake along the shore with most of the homes and cottages located across the roadway, opposite the lake. In addition to the lake being located in a highly populated area, the limited shoreline area adds to the challenges created by urban stormwater runoff.

Runoff from urban lands and erosion of streambanks and shorelines delivers nutrients and sediment to Harveys Lake. High nutrient levels in the lake contribute to algal blooms and other water quality issues. In order to address these challenges, the project team implemented a number of small-scale streambank and inlet stabilization projects with big impacts.

The work included the stabilization of the streambank downstream for Harveys Lake dam and along Harveys Creek, the design and installation of a riparian buffer immediately along the lake’s shoreline, and selective dredging to remove sediment build up in critical areas throughout the watershed.

 

Invasive Species Management

Hydrilla (Hydrilla verticillata), an aggressively growing aquatic plant, took root in the lake in 2014 and quickly infected 250 acres of the lake in a matter of three years. If left untreated, hydrilla will grow to the water’s surface and create a thick green mat, which prevents sunlight from reaching native plants, fish and other organisms below. The lack of sunlight chokes out all aquatic life.

In order to prevent hydrilla from spreading any further, Princeton Hydro and SePRO conducted an emergency treatment of the impacted area utilizing the systemic herbicide Sonar® (Fluridone), a clay-based herbicide. SonarOne, manufactured by SePRO, blocks hydrilla’s ability to produce chloroplasts, which in turn halts the photosynthetic process. The low-concentration herbicide does not harm fish, wildlife or people using the lake. Surveys conducted after the treatment showed it was working – the hydrilla had turned white and was dying off. Additional Sonar treatments followed and efforts to eradicate hydrilla in the lake continue.

Dr. Fred Lubnow, our Director of Aquatic Programs, estimates complete eradication of the aquatic plant could take around five years. Everyone can do their part in preventing the spread of this and other invasive species. Boaters and lake users must be vigilant and remove all vegetation from the bottom of watercrafts and trailers.

 

Stormwater Best Management Practices (BMPs)

In 2009, Princeton Hydro developed a stormwater implementation plan (SIP) for Harveys Lake. The goal of the stormwater/watershed-based efforts was to reduce the lake’s existing annual total phosphorus load to be in full compliance with the established Total Maximum Daily Load (TMDL). This TMDL is related to watershed-based pollutant loads from total phosphorus (TP) and total suspended solids (TSS), which can contribute to algal blooms.

A number of structural urban runoff projects were implemented throughout the watershed. This includes the design and construction of two natural stream channel projects restoring 500 linear feet of tributaries and reducing the sediment and nutrient loads entering the lake. A series of 38 urban runoff BMPs, including nutrient separating devices and roadside infiltration, were installed in areas immediately adjacent to the lake to further reduce the loads of nutrients and other pollutants reaching the lake.

The photos below show a stormwater project that was completed in the Hemlock Gardens Section of the Watershed. Hemlock Gardens is a 28-acre section of land located in the southeastern portion of the watershed. It contains approximately 26 homes, has very steep slopes, unpaved dirt roads, and previously had no stormwater infrastructure in place.

Two structural stormwater BMPs were installed:

  • A nutrient separating baffle box, which utilizes a three-chamber basin with screens to collect leaf litter, grass clippings and trash
  • A water polishing unit that provides a platform for secondary runoff treatment

In 1994, Harveys Lake was identified as “impaired” by PADEP due to large algal blooms. In 2014, Harveys Lake was removed from the list of impaired waters. Project partners attribute the recovery of this lake to the stream restoration, urban runoff BMP implementation, and the use of in-lake nutrient reduction strategies.

The Harveys Lake Watershed Protection Plan Implementation Project proved that despite the lake being located in an urbanized watershed, it is possible to implement cost-effective green infrastructure and stormwater retrofit solutions capable of significantly decreasing pollutant loading to the lake.

To learn more about our lake and pond management services or schedule a consultation, visit: http://bit.ly/pondlake.

Green Infrastructure and Stormwater Utilities: Solutions to NJ’s Environmental Issues

Flooding, runoff, and storm surges, OH MY!

With increases in each of these occurring now, the imposition of green infrastructure and a stormwater utility fee are viable solutions to reducing their impacts. Plus, with the passing of the S-1073/A2694 bill in early 2019, the introduction of a stormwater utility became legal in New Jersey, making it the 41st state to do so.

On June 19, 2019, The Watershed Institute in Pennington, NJ held the “New Jersey Green Infrastructure & Stormwater Utilities Symposium” to address the environmental problems New Jersey faces and present solutions, including the stormwater utility. The event was geared for municipal officials, engineers, nonprofit leaders, and other interested parties, with an agenda full of expert speakers sharing insights and ideas on topics like the science of stormwater, New Jersey’s proposed stormwater rule changes, why green infrastructure and a stormwater utility fee matter, and possibilities for how to move New Jersey forward.

So, What is Green Infrastructure?

Brian Friedlich, the first presenter and a project manager for Kleinfelder, relayed that according to NJDEP, green infrastructure consists of “methods of stormwater management that reduce stormwater volume, flow, or characteristics by allowing the stormwater to infiltrate, be treated by vegetation or by soils, or be stored for use.” He also explained that green infrastructure can improve the environment and communities by providing community engagement, greening communities, addressing flooding, improving water quality by reducing CSOs, harvesting rainwater, increasing habitat for wildlife, and increasing property values.

After Brian’s presentation, a founding Principal of Princeton Hydro, Dr. Stephen Souza, now CEO of Clean Waters Consulting, urged that we should “turn down the volume,” when it comes to stormwater runoff. He explained that it is not enough to just manage peak flow of stormwater; we must also work to lower the volume of off-site stormwater discharge. So, how can you and your municipality do this? He offered six principles to designing successful green infrastructure projects:

  1. Treat stormwater as a resource
  2. Don’t make stormwater management an afterthought
  3. Attack the cause not the symptoms
  4. Turn your watershed inside out
  5. Think small to achieve big results
  6. Use nature as your model

Not only is successful implementation of green infrastructure important, but communal understanding of it may be more so. That is why Princeton Hydro partnered with New Jersey Future, Clark Caton Hintz, Rutgers Cooperative Extension Water Resources Program, FZ Creative, and municipal stakeholders to launch the New Jersey Green Infrastructure Municipal Toolkit. Filled with helpful information about green infrastructure, this free resource is extremely useful for gaining communal understanding, getting started, implementing nature-based stormwater solutions, and sustaining your program.

What is Stormwater and Why Should Municipalities Require a Utility Fee for It?

Before we get into why it is imperative for New Jersey municipalities to implement a stormwater utility fee, it is important to understand just what stormwater is, what it does, and how it affects New Jersey residents.

The name is pretty intuitive: stormwater is the water that comes from precipitation, whether that be rain, snow, or ice melt. With increasing levels of water from climate change impacts (i.e. storm surge, increased rainfall, sea level rise), stormwater management has become an issue for states all across the U.S., whether it’s an over abundance or lack thereof.

So, what’s happening in New Jersey? The stormwater infrastructure that is currently in place (storm drains, sewer piping, etc.) is aging and unable to effectively handle the amount of runoff that has been flowing through the region in recent years. This is causing increased nutrient runoff and flooding all over the state. And, with increasing global temperatures, this trend is likely to continue.

To combat these issues, New Jersey passed the S-1073/A2694 bill in January 2019, authorizing counties and municipalities, either separately or in combination with other municipalities, to begin implementing a stormwater utility fee to New Jersey residents.

The law itself states:

“Every sewerage authority is hereby authorized to charge and collect rents, rates, fees, or other charges for direct or indirect use or services of its stormwater management system. The stormwater service charges may be charged to and collected from the owner or occupant, or both, of any real property. The owner of any real property shall be liable for and shall pay the stormwater service charges to the sewerage authority at the time when and place where these charges are due and payable. The rents, rates, fees, and charges shall be determined in a manner consistent with the stormwater utility guidance manual created by the Department of Environmental Protection pursuant to section 24 of P.L.

Any stormwater service charge imposed pursuant to subsection a. of this section shall be calculated in a manner consistent with the guidance provided in the stormwater utility guidance manual created by the Department of Environmental Protection pursuant to section 24 of P.L.”

Essentially, this fee charges a chosen type of property owner within a given municipality or region a certain amount of money for the impervious area (mainly artificial structures like asphalt, concrete, stone, rooftops, etc. that water can’t seep through) they have on their property. Just how much that fee is and whether or not there’s a limit on the chargeable impermeable area are dependent on the government agency.

Since the impervious area blocks water from seeping into the ground, it becomes runoff and ends up in the stormwater drain. And, since New Jersey’s systems are growing old and less efficient, it makes sense to implement a fee for their use. Historically, general taxpayer dollars or legislative appropriations have been used to fund updates to aging infrastructure. Implementing a utility fee will create a consistent funding source to update and expand the current aging infrastructure so that flooding will occur less.

Other states, like neighboring Pennsylvania, have been proactive in addressing these impacts by implementing a stormwater utility fee. And, in Maryland, the state implemented a watershed restoration program and MS4 efforts that require stormwater utility fees. These initiatives have generated a job-creating industry boom that benefits engineers, contractors, and local DPWs. At the same time, Maryland’s program is improving the water quality in the Chesapeake Bay, and stimulating the tourism and the crabbing/fishing industry.

In relation to how urban cities are affected by stormwater, John Miller, the FEMA Mitigation Liaison, shared this helpful resource, “The Growing Threat of Urban Flooding: A National Challenge” during the symposium. It addresses the extent and consequences of urban flooding in the U.S., while exploring actions that can be taken to mitigate future flooding. Amongst other recommendations made, the research group encouraged Congress and state officials to “develop appropriate mechanisms at the federal, state, and local level to fund necessary repairs, operations, and upgrades of current stormwater and urban flood-related infrastructure.”

A stormwater utility should not only be reviewed in the context of cost, since it meets all three elements of a triple-bottom line: social, environmental, and financial. Other considerations are the fact that allowing stormwater utilities in New Jersey will create jobs, help reduce flood impacts, enhance water quality, improve our fisheries, and preserve our water-based tourism economy.

When it comes to green infrastructure, Princeton Hydro has been a leader in innovative, cost-effective, and environmentally sound stormwater management systems since its inception. Long before the term “green infrastructure” was part of the design community’s lexicon, the firm’s engineers were integrating nature-based stormwater management systems to fulfill such diverse objectives as flood control, water quality protection, and pollutant load reduction. And, Princeton Hydro has developed regional nonpoint source pollutant budgets for over 100 waterways. The preparation of stormwater management plans and design of stormwater management systems for pollutant reduction is an integral part of many of the firm’s projects. So, we are major proponents of implementing stormwater utilities and green infrastructure into our everyday lives.

Do you have questions regarding green infrastructure or stormwater utilities? Contact us here.

 

PHOTOS: #BagThePhrag Update from Roebling Park

We’re gearing up for another invasive species treatment event at Roebling Park!

Located in Hamilton Township, New Jersey, Mercer County’s John A. Roebling Memorial Park offers residents in the surrounding area a freshwater marsh with river fishing, kayaking, hiking, and wildlife-watching. The park contains the northernmost freshwater tidal marsh on the Delaware River, Abbott Marshland. Since the mid-1990s, many public and private partnerships have developed to help support the preservation of this important and significant marsh.

Our Field Operations Team was recently at the project site assessing present invasive species and re-evaluating access points for our treatment equipment. Check out these photos from their visit!

 

For more information on this marsh restoration project at John A. Roebling Park, visit our original project blog:

Restoring the Northernmost Freshwater Tidal Marsh on the Delaware River

Part One: Damned If You Do, Dammed If You Don’t: Making Decisions and Resolving Conflicts on Dam Removal

People have been building dams since prerecorded history for a wide variety of economically valuable purposes including water supply, flood control, and hydroelectric power. Back in the 1950s and 60s, the U.S. saw a boom in infrastructure development, and dams were being built with little regard to their impacts on rivers and the environment. By the 1970s, the rapid progression of dam building in the U.S. led researchers to start investigating the ecological impacts of dams. Results from these early studies eventually fueled the start of proactive dam removal activities throughout the U.S.

Despite the proven benefits of dam removal, conflicts are a prevalent part of any dam removal project. Dam removal, like any other social decision-making process, brings up tensions around economics and the distribution of real and perceived gains and losses. In this two part blog series, we take a look at addressing and preventing potential conflicts and the key factors involved in dam removal decision-making – to remove or not to remove.

Why We Remove Dams

The primary reasons we remove dams are safety, economics, ecology, and regulatory. There has been a growing movement to remove dams where the costs – including environmental, safety, and socio-cultural impacts – outweigh the benefits of the dam or where the dam no longer serves any useful purpose. In some cases, it’s more beneficial economically to remove a dam than to keep it, even if it still produces revenue. Sometimes the estimated cost of inspection, repair, and maintenance can significantly exceed the cost of removal, rendering generated projected revenue insignificant.

Safety reasons are also vital, especially for cases in which dams are aging, yet still holding large amounts of water or impounded sediment. As dams age and decay, they can become public safety hazards, presenting a failure risk and flooding danger. According to American Rivers, “more than 90,000 dams in the country are no longer serving the purpose that they were built to provide decades or centuries ago.” Dam removal has increasingly become the best option for property owners who can no longer afford the rising cost of maintenance and repair work required to maintain these complex structures.

The goal of removal can be multi-faceted, including saving taxpayer money; restoring flows for migrating fish, other aquatic organisms, and wildlife; reinstating the natural sediment and nutrient flow; eliminating safety risks; and restoring opportunities for riverine recreation.

Moosup River

Common Obstacles to Dam Removal

Dam removal efforts are often subjected to a number of different obstacles that can postpone or even halt the process altogether. Reasons for retaining dams often involve: aesthetics and reservoir recreation; water intakes/diversions; hydroelectric; quantity/quality of sediment; funding issues; cultural/historic values of manmade structures; owner buy-in; sensitive species; and community politics.

Of those common restoration obstacles, one of the more frequently encountered challenges is cost and funding. Determining who pays for the removal of a dam is often a complex issue. Sometimes, removal can be financed by the dam owner, local, state, and federal governments, and in some cases agreements are made whereby multiple stakeholders contribute to cover the costs. Funding for dam removal projects can be difficult to obtain because it typically has to come from a variety of sources.

Anecdotally, opposition also stems from fear of change and fear of the unknown. Bruce Babbitt, the United States Secretary of the Interior from 1993 through 2001 and dam removal advocate, said in an article he wrote, titled A River Runs Against It: America’s Evolving View of Dams, “I always wonder what is it about the sound of a sledgehammer on concrete that evokes such a reaction? We routinely demolish buildings that have served their purpose or when there is a better use for the land. Why not dams? For whatever reason, we view dams as akin to the pyramids of Egypt—a permanent part of the landscape, timeless monuments to our civilization and technology.”

Negative public perceptions of dam removal and its consequences can seriously impede removal projects. Although there are many reasons for the resistance to dam removal, it is important that each be understood and addressed in order to find solutions that fulfill both the needs of the environment and the local communities.

Stay tuned for Part Two of this blog series in which we explore strategies for analyzing dams and what goes into deciding if a dam should remain or be removed.

Study Data Leads to Healthier Wreck Pond Ecosystem

Wreck Pond is a tidal pond located on the coast of the Atlantic Ocean in southern Monmouth County, New Jersey. The 73-acre pond, which was originally connected to the sea by a small and shifting inlet, got its name in the 1800s due to the numerous shipwrecks that occurred at the mouth of the inlet. The Sea Girt Lighthouse was built to prevent such accidents. In the 1930s, the inlet was filled in and an outfall pipe was installed, thus creating Wreck Pond. The outfall pipe allowed limited tidal exchange between Wreck Pond and the Atlantic Ocean.

In the 1960s, Wreck Pond flourished with wildlife and was a popular destination for recreational activities with tourists coming to the area mainly from New York City and western New Jersey. In the early spring, hundreds of river herring would migrate into Wreck Pond, travelling up its tributaries — Wreck Pond Brook, Hurleys Pond Brook and Hannabrand Brook — to spawn. During the summer, the pond was bustling with recreational activities like swimming, fishing, and sailing.

Over time, however, the combination of restricted tidal flow and pollution, attributable to increased development of the watershed, led to a number of environmental issues within the watershed, including impaired water quality, reduced fish populations, and flooding.

Throughout the Wreck Pond watershed, high stream velocities during flood conditions have caused the destabilization and erosion of stream banks, which has resulted in the loss of riparian vegetation and filling of wetlands. Discharge from Wreck Pond during heavy rains conveys nonpoint source pollutants that negatively impact nearby Spring Lake and Sea Girt beaches resulting in beach closings due to elevated bacteria counts. Watershed erosion and sediment transported with stormwater runoff has also contributed to excessive amounts of sedimentation and accumulations of settled sediment, not only within Wreck Pond, but at the outfall pipe as well. This sediment further impeded tidal flushing and the passage of anadromous fish into and out of Wreck Pond.

In 2012, Hurricane Sandy caused wide-spread destruction throughout New Jersey and the entire eastern seaboard. The storm event also caused a major breach of the Wreck Pond watershed’s dune beach system and failure of the outfall pipe. The breach formed a natural inlet next to the outfall pipe, recreating the connection to the Atlantic Ocean that once existed. This was the first time the inlet had been open since the 1930s, and the reopening cast a new light on the benefits of additional flow between the pond and the ocean.

Hurricane Sandy sparked a renewed interest in reducing flooding impacts throughout the watershed, including efforts to restore the water quality and ecology of Wreck Pond. The breach caused by Hurricane Sandy was not stable, and the inlet began to rapidly close due to the deposition of beach sand and the discharge of sediment from Wreck Pond and its watershed.

Princeton Hydro and HDR generated the data used to support the goals of the feasibility study through a USACE-approved model of Wreck Pond that examined the dynamics of Wreck Pond along with the water bodies directly upland, the watershed, and the offshore waters in the immediate vicinity of the ocean outfall. The model was calibrated and verified using available “normalized” tide data. Neighboring Deal Lake, which is also tidally connected to the ocean by a similar outfall pipe, was used as the “reference” waterbody. The Wreck Pond System model evaluated the hydraulic characteristics of Wreck Pond with and without the modified outfall pipe, computed pollutant inputs from the surrounding watershed, and predicted Wreck Pond’s water quality and ecological response. The calibrated model was also used to investigate the effects and longevity of dredging and other waterway feature modifications.

As part of the study, Princeton Hydro and HDR completed hazardous, toxic, and radioactive waste (HTRW) and geotechnical investigations of Wreck Pond’s sediment to assess potential flood damage reduction and ecological restoration efforts of the waterbody. The investigation included the progression of 10 sediment borings conducted within the main body of Wreck Pond, as well as primary tributaries to the pond. The borings, conducted under the supervision of our geotechnical staff, were progressed through the surgical accumulated sediment, not the underlying parent material. Samples were collected for analysis by Princeton Hydro’s AMRL-accredited (AASHTO Materials Reference Library) and USACE-certified laboratory. In accordance with NJDEP requirements, sediment samples were also forwarded to a subcontracted analytical laboratory for analysis of potential nonpoint source pollutants.

In the geotechnical laboratory, the samples were subjected to geotechnical indexing tests, including grain size, organic content, moisture content, and plasticity/liquid limits. For soil strength parameters, the in-field Standard Penetration Test (SPT), as well as laboratory unconfined compression tests, were performed on a clay sample to provide parameters for slope stability modeling.

The culvert construction and sediment dredging were completed at the end of 2016. Continued restoration efforts, informed and directed by the data developed through Princeton Hydro’s feasibility study, are helping to reduce the risk of flooding to surrounding Wreck Pond communities, increase connectivity between the pond and ocean, and improve water quality. The overall result is a healthier, more diverse, and more resilient Wreck Pond ecosystem.

During the time of the progression of study by the USACE, the American Littoral Society and the towns of Spring Lake and Sea Girt were also progressing their own restoration effort and completed the implementation of an additional culvert to the Atlantic Ocean.  The American Littoral Society was able to utilize the data, analysis, and modeling results developed by the USACE to ensure the additional culvert would increase tidal flushing and look to future restoration projects within Wreck Pond.

American Littoral Society

 

To learn more about our geotechnical engineering services, click here.

Wetland Restoration Project Wins “Land Ethics” Award of Merit

The Pin Oak Forest Conservation Area, located in a heavily developed area of northern Middlesex County, New Jersey, once suffered from wetland and stream channel degradation, habitat fragmentation, decreased biodiversity due to invasive species, and ecological impairment. The site was viewed as one of only a few large-scale freshwater wetland restoration opportunities remaining in this region of New Jersey. Thus, a dynamic partnership between government agencies, NGOs, and private industry, was formed to steward the property back to life and restore its natural function. Today, at Bowman’s Hill Wildflower Preserve’s 19th Annual Land Ethics Symposium, Middlesex County and the project team were presented with the “Land Ethics Award of Merit” for its remarkable restoration achievements.

“In just a few years, the landscape at Pin Oak has transformed from a degraded, disconnected wetland to a healthy, high-functioning landscape,” said Mark Gallagher, Vice President of Princeton Hydro. “This restoration project exemplifies how a diverse group of public and private entities can work together to identify opportunities, overcome challenges and achieve tremendous success.”

The Pin Oak restoration team includes Middlesex County Office of Parks and Recreation, Woodbridge Township, Woodbridge River Watch, New Jersey Freshwater Wetlands Mitigation Council, GreenTrust Alliance, GreenVest, and Princeton Hydro.

The Pin Oak Forest Conservation Area is a 97-acre tract of open space that contains a large wetland complex at the headwaters of Woodbridge Creek. In 2017, the award-winning restoration project converted over 30 acres of degraded freshwater wetlands, streams and disturbed uplands dominated by invasive species into a species-rich and highly functional headwater wetland complex. The resulting ecosystem provides valuable habitat for wildlife and a nurturing environment for native plants such as pin oak, swamp white oak, marsh hibiscus, and swamp rose. The restored headwater wetland system provides stormwater management, floodplain storage, enhanced groundwater recharge onsite, and surface water flows to Woodbridge Creek, as well as public hiking trails, all benefiting the town of Woodbridge.

The Land Ethics Award recognizes the creative use of native plants in the landscape, sustainable and regenerative design, and ethical land management and construction practices. The recipient is selected by a jury of professionals in the field of design, preservation and conservation, and the award is presented at the Annual Symposium.

Photo courtesy of Barbara Storms, Bowman’s Hill Wildflower Preserve.

In addition to the Award of Merit, Bowman’s Hill Wildflower Preserve’s honored Dr. Marion Kyde with the 2019 Land Ethics Director’s Award and Doylestown Township Environmental Advisory Council with the 2019 Land Ethics Award. Congratulations to all of the winners!

Established in 1934, Bowman’s Hill Wildflower Preserve is a 134-acre nature preserve, botanical garden, and accredited museum working to inspire the appreciation and use of native plants by serving as a sanctuary and educational resource for conservation and stewardship. For more information, visit www.bhwp.org.

Read more about the Pin Oak Forest Restoration project:

Innovative and Effective Approach to Wetland Restoration

To learn more about Princeton Hydro’s wetland restoration services and recent projects, visit us here: http://bit.ly/PHwetland

 

Part Two: Reducing Flood Risk in Moodna Creek Watershed

Photo of Moodna Creek taken from the Forge Hill Road bridge, New Windsor Post Hurricane Irene (Courtesy of Daniel Case via Wikimedia Commons)

This two-part blog series showcases our work in the Moodna Creek Watershed in order to explore common methodologies used to estimate flood risk, develop a flood management strategy, and reduce flooding.

Welcome to Part Two: Flood Risk Reduction and Stormwater Management in the Moodna Creek Watershed

As we laid out in Part One of this blog series, the Moodna Creek Watershed, which covers 180 square miles of eastern Orange County, New York, has seen population growth in recent years and has experienced significant flooding from extreme weather events like Hurricane Irene, Tropical Storm Lee, and Hurricane Sandy. Reports indicate that the Moodna Creek Watershed’s flood risk will likely increase as time passes.

Understanding the existing and anticipated conditions for flooding within a watershed is a critical step to reducing risk. Our analysis revealed that flood risk in the Lower Moodna is predominantly driven by high-velocity flows that cause erosion, scouring, and damage to in-stream structures. The second cause of risk is back-flooding due to naturally formed and man-made constrictions within the channel. Other factors that have influenced flood risk within the watershed, include development within the floodplain and poor stormwater management.

Now, let’s take a closer look at a few of the strategies that we recommended for the Lower Moodna Watershed to address these issues and reduce current and future flood risk:

Stormwater Management

Damage to Butternut Drive caused when Moodna Creek flooded after Hurricane Irene (Courtesy of Daniel Case via Wikimedia Commons)

Stormwater is the runoff or excess water caused by precipitation such as rainwater or snowmelt. In urban areas, it flows over sewer gates which often drain into a lake or river. In natural landscapes, plants absorb and utilize stormwater, with the excess draining into local waterways.  In developed areas, like the Moodna Creek watershed, challenges arise from high volumes of uncontrolled stormwater runoff. The result is more water in streams and rivers in a shorter amount of time, producing higher peak flows and contributing to flooding issues.

Pollutant loading is also a major issue with uncontrolled stormwater runoff. Population growth and development are major contributors to the amount of pollutants in runoff as well as the volume and rate of runoff. Together, they can cause changes in hydrology and water quality that result in habitat loss, increased flooding, decreased aquatic biological diversity, and increased sedimentation and erosion.

To reduce flood hazards within the watershed, stormwater management is a primary focus and critical first step of the Moodna Creek Watershed Management Plan. The recommended stormwater improvement strategies include:

  • Minimizing the amount of impervious area within the watershed for new development, and replacing existing impervious surfaces with planter boxes, rain gardens and porous pavement.
  • Utilizing low-impact design measures like bioretention basins and constructed-wetland systems that mimic the role of natural wetlands by temporarily detaining and filtering stormwater.
  • Ensuring the long-term protection and viability of the watershed’s natural wetlands.

The project team recommended that stormwater management be required for all projects and that building regulations ensure development does not change the quantity, quality, or timing of run-off from any parcel within the watershed. Recommendations also stressed the importance of stormwater management ordinances focusing on future flood risk as well as addressing the existing flooding issues.

Floodplain Storage

Floodplains are the low-lying areas of land where floodwater periodically spreads when a river or stream overtops its banks. The floodplain provides a valuable function by storing floodwaters, buffering the effect of peak runoff, lessening erosion, and capturing nutrient-laden sediment.

Communities, like the Moodna Creek watershed, can reduce flooding by rehabilitating water conveyance channels to slow down the flow, increasing floodplain storage in order to intercept rainwater closer to where it falls, and creating floodplain benches to store flood water conveyed in the channel.  Increasing floodplain storage can be an approach that mimics and enhances the natural functions of the system.

One of the major causes of flooding along the Lower Moodna was the channel’s inability to maintain and hold high volumes of water caused by rain events. During a significant rain event, the Lower Moodna channel tends to swell, and water spills over its banks and into the community causing flooding. One way to resolve this issue is by changing the grading and increasing the size and depth of the floodplain in certain areas to safely store and infiltrate floodwater. The project team identified several additional opportunities to increase floodplain storage throughout the watershed.

One of the primary areas of opportunity was the Storm King Golf Club project site (above). The team analyzed the topography of the golf course to see if directing flow onto the greens would alter the extent and reach of the floodplain thus reducing the potential for flooding along the roadways and properties in the adjacent neighborhoods. Based on LiDAR data, it was estimated that the alteration of 27 acres could increase floodplain storage by 130.5 acre-feet, which is equivalent to approximately 42.5 million gallons per event.

Land Preservation & Critical Environmental Area Designation

For areas where land preservation is not a financially viable option, but the land is undeveloped, prone to flooding, and offers ecological value that would be impacted by development, the project team recommended a potential Critical Environmental Area (CEA) designation. A CEA designation does not protect land in perpetuity from development, but would trigger environmental reviews for proposed development under the NY State Quality Environmental Review Act. And, the designation provides an additional layer of scrutiny on projects to ensure they will not exacerbate flooding within the watershed or result in an unintentional increase in risk to existing properties and infrastructure.

Conserved riparian areas also generate a range of ecosystem services, in addition to the hazard mitigation benefits they provide. Protected forests, wetlands, and grasslands along rivers and streams can improve water quality, provide habitat to many species, and offer a wide range of recreational opportunities. Given the co-benefits that protected lands provide, there is growing interest in floodplain conservation as a flood damage reduction strategy.


These are just a few of the flood risk reduction strategies we recommended for the Lower Moodna Creek watershed. For a more in-depth look at the proposed flood mitigation strategies and techniques, download a free copy of our Moodna Creek Watershed and Flood Mitigation Assessment presentation.

Revisit part-one of this blog series, which explores some of the concepts and methods used to estimate flood risk for existing conditions in the year 2050 and develop a flood management strategy.

Two-Part Blog Series: Flood Assessment, Mitigation & Management

For more information about Princeton Hydro’s flood management services, go here: http://bit.ly/PHfloodplain